निक्षेपण (रसायन विज्ञान)

From Vigyanwiki
Revision as of 12:24, 2 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Chemical mixtures}} {{About|dispersion in chemistry|other forms of dispersion|Dispersion (disambiguation)}} {{More citations needed|date=December 2013}} {...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
IUPAC definition

Material comprising more than one phase where at least one of the phases consists of finely divided phase domains, often in the colloidal size range, dispersed throughout a continuous phase.[1]

Note 1: Modification of definition in ref.[2]

एक फैलाव एक प्रणाली है जिसमें एक सामग्री के वितरित कणों को दूसरी सामग्री के निरंतर चरण (पदार्थ) में फैलाया जाता है। दो चरण पदार्थ की समान या भिन्न अवस्था में हो सकते हैं।

फैलाव को कई अलग-अलग तरीकों से वर्गीकृत किया जाता है, जिसमें निरंतर चरण के कणों के संबंध में कण कितने बड़े होते हैं, चाहे अवक्षेपण (रसायन विज्ञान) होता है या नहीं, और एक प्रकार कि गति की उपस्थिति। सामान्य तौर पर, अवसादन के लिए पर्याप्त रूप से बड़े कणों के फैलाव को निलंबन (रसायन विज्ञान) कहा जाता है, जबकि छोटे कणों को कोलाइड्स और समाधान कहा जाता है।

संरचना और गुण

फैलाव कोई संरचना प्रदर्शित नहीं करते हैं; यानी, तरल या ठोस मैट्रिक्स (फैलाव माध्यम) में फैले कणों (या पायस के मामले में: बूंदों) को सांख्यिकीय रूप से वितरित माना जाता है। इसलिए, फैलाव के लिए, आमतौर पर परकोलेशन सिद्धांत को उनके गुणों का उचित वर्णन करने के लिए माना जाता है।

हालांकि, परकोलेशन सिद्धांत को तभी लागू किया जा सकता है, जब जिस प्रणाली का वर्णन करना चाहिए वह थर्मोडायनामिक संतुलन में या उसके करीब हो। फैलाव (पायस) की संरचना के बारे में बहुत कम अध्ययन हैं, हालांकि वे असंख्य अनुप्रयोगों में दुनिया भर में बहुतायत से और उपयोग में हैं (नीचे देखें)।

निम्नलिखित में, केवल 1 माइक्रोमीटर से कम के फैलाव चरण व्यास वाले ऐसे फैलाव पर चर्चा की जाएगी। इस तरह के फैलाव (इमल्शन सहित) के गठन और गुणों को समझने के लिए, यह माना जाना चाहिए कि छितरी हुई अवस्था एक सतह को प्रदर्शित करती है, जो एक अलग सतह से ढकी (गीली) होती है, इसलिए, एक इंटरफ़ेस (रसायन विज्ञान) बना रही है। दोनों सतहों को बनाया जाना है (जिसके लिए बड़ी मात्रा में ऊर्जा की आवश्यकता होती है), और इंटरफेसियल तनाव (सतह तनाव का अंतर) ऊर्जा इनपुट को क्षतिपूर्ति नहीं कर रहा है, यदि बिल्कुल भी।

प्रायोगिक साक्ष्य से पता चलता है कि फैलाव की संरचना किसी भी प्रकार के सांख्यिकीय वितरण से बहुत भिन्न होती है (जो थर्मोडायनामिक संतुलन में एक प्रणाली के लिए विशेषता होगी), लेकिन स्व-संगठन के समान विपरीत प्रदर्शन संरचनाओं में, जिसे गैर-संतुलन ऊष्मप्रवैगिकी द्वारा वर्णित किया जा सकता है।[3] यही कारण है कि कुछ तरल फैलाव एक महत्वपूर्ण एकाग्रता (जो कण आकार और इंटरफेसियल तनाव पर निर्भर है) के ऊपर एक फैलाव चरण की एकाग्रता पर जैल या यहां तक ​​कि ठोस हो जाते हैं। इसके अलावा, एक इन्सुलेट मैट्रिक्स में एक छितरी हुई प्रवाहकीय चरण की प्रणाली में चालकता की अचानक उपस्थिति को समझाया गया है।

फैलाव विवरण

फैलाव एक ऐसी प्रक्रिया है जिसके द्वारा (तरल में ठोस फैलाव के मामले में) एकत्रित कणों को एक दूसरे से अलग किया जाता है, और तरल फैलाव माध्यम की आंतरिक सतह और छितरी हुई कणों की सतह के बीच एक नया इंटरफ़ेस उत्पन्न होता है। इस प्रक्रिया को आणविक प्रसार और संवहन द्वारा सुगम बनाया गया है।[4] आण्विक प्रसार के संबंध में, फैलाव पूरे थोक माध्यम में पेश की गई सामग्री की असमान एकाग्रता के परिणामस्वरूप होता है। जब बिखरी हुई सामग्री को पहली बार बल्क माध्यम में पेश किया जाता है, तो जिस क्षेत्र में इसे पेश किया जाता है, उस सामग्री में थोक में किसी भी अन्य बिंदु की तुलना में उच्च एकाग्रता होती है। इस असमान वितरण के परिणामस्वरूप एक सघनता प्रवणता उत्पन्न होती है जो माध्यम में कणों के फैलाव को चलाती है ताकि संकेंद्रण पूरे थोक में स्थिर रहे। संवहन के संबंध में, बल्क में प्रवाह पथों के बीच वेग में भिन्नता माध्यम में छितरी हुई सामग्री के वितरण की सुविधा प्रदान करती है।

यद्यपि दोनों परिवहन घटनाएं थोक में सामग्री के फैलाव में योगदान देती हैं, फैलाव का तंत्र मुख्य रूप से उन मामलों में संवहन द्वारा संचालित होता है जहां बल्क में महत्वपूर्ण अशांत प्रवाह होता है।[5] थोक में कम से कम अशांति के मामलों में फैलाव की प्रक्रिया में प्रसार प्रमुख तंत्र है, जहां आणविक प्रसार लंबे समय तक फैलाव को सुविधाजनक बनाने में सक्षम है।[4]ये घटनाएँ आम वास्तविक दुनिया की घटनाओं में परिलक्षित होती हैं। भोजन के रंग की एक बूंद में पानी में मिलाए जाने वाले अणु अंततः पूरे माध्यम में फैल जाएंगे, जहां आणविक प्रसार के प्रभाव अधिक स्पष्ट हैं। हालांकि, मिश्रण को चम्मच से हिलाने से पानी में अशांत प्रवाह पैदा होगा जो संवहन-प्रभुत्व वाले फैलाव के माध्यम से फैलाव की प्रक्रिया को तेज करता है।

फैलाव की डिग्री

शब्द फैलाव उस डिग्री की भौतिक संपत्ति को भी संदर्भित करता है जिससे कण एक साथ समूह या समुच्चय में टकराते हैं। आईएसओ नैनोटेक्नोलॉजी की परिभाषाओं के अनुसार, जबकि दो शब्दों का अक्सर एक दूसरे के स्थान पर उपयोग किया जाता है, flocculation कमजोर रूप से बंधे कणों का एक प्रतिवर्ती संग्रह है, उदाहरण के लिए वैन डेर वाल्स बलों या भौतिक उलझाव द्वारा, जबकि एक कण एकत्रीकरण अपरिवर्तनीय रूप से बंधे या जुड़े हुए कणों से बना होता है। उदाहरण के लिए सहसंयोजक बंधों के माध्यम से।[6] परिक्षेपण के पूर्ण परिमाणीकरण में प्रत्येक एग्लोमरेट या समुच्चय में कणों का आकार, आकार और संख्या, अंतरकण बलों की शक्ति, उनकी समग्र संरचना और सिस्टम के भीतर उनका वितरण शामिल होगा। हालांकि, जटिलता आमतौर पर प्राथमिक कणों के मापा आकार वितरण की तुलना एग्लोमेरेट्स या समुच्चय से की जाती है।[7] तरल मीडिया में ठोस कणों के निलंबन_(रसायन विज्ञान) पर चर्चा करते समय, जीटा क्षमता का उपयोग अक्सर फैलाव की डिग्री को मापने के लिए किया जाता है, जिसमें जीटा क्षमता के उच्च पूर्ण मूल्य वाले निलंबन को अच्छी तरह से फैला हुआ माना जाता है।

फैलाव के प्रकार

एक समाधान (रसायन विज्ञान) एक सजातीय मिश्रण का वर्णन करता है जहां लंबे समय तक घोल को बिना हिलाए छोड़े जाने पर छितरे हुए कण व्यवस्थित नहीं होंगे।

एक कोलाइड एक विषम मिश्रण होता है जहां फैले कणों में कम से कम एक दिशा में लगभग 1 एनएम और 1 माइक्रोन के बीच एक आयाम होता है या उस क्रम की दूरी पर एक प्रणाली में असंतोष पाया जाता है।[8] एक निलंबन (रसायन विज्ञान) एक माध्यम में बड़े कणों का विषम फैलाव है। विलयनों और कोलाइड्स के विपरीत, यदि लंबे समय तक बिना छेड़े छोड़ दिया जाए, तो निलंबित कण मिश्रण से बाहर निकल जाएंगे।

हालांकि निलंबन समाधान और कोलाइड से अलग करने के लिए अपेक्षाकृत सरल हैं, लेकिन कोलाइड से समाधान को अलग करना मुश्किल हो सकता है क्योंकि माध्यम में फैले हुए कण मानव आंखों से अलग होने के लिए बहुत छोटे हो सकते हैं। इसके बजाय, टिंडल प्रभाव का उपयोग समाधान और कोलाइड्स को अलग करने के लिए किया जाता है। साहित्य में प्रदान किए गए समाधान, कोलाइड्स और निलंबन की विभिन्न रिपोर्ट की गई परिभाषाओं के कारण, प्रत्येक वर्गीकरण को एक विशिष्ट कण आकार सीमा के साथ लेबल करना मुश्किल है। शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ कोलाइड्स के लिए एक मानक नामकरण प्रदान करने का प्रयास करती है, जो एक आकार सीमा में कणों के रूप में होता है, जिसका आयाम लगभग 1 एनएम और 1 माइक्रोन के बीच होता है।[9] कण आकार द्वारा वर्गीकरण के अलावा, फैलाव को फैलाव चरण और मध्यम चरण के संयोजन द्वारा भी लेबल किया जा सकता है जिसमें कण निलंबित होते हैं। एयरोसोल एक गैस में फैले हुए तरल पदार्थ होते हैं, सॉल तरल पदार्थ में ठोस होते हैं, पायसन बिखरे हुए तरल पदार्थ होते हैं। तरल पदार्थों में (विशेष रूप से दो अमिश्रणीय तरल पदार्थों का फैलाव), और जैल ठोस पदार्थों में बिखरे हुए तरल पदार्थ होते हैं।

Components phases Homogeneous mixture Heterogeneous mixture
Dispersed
material
Continuous
medium
Solution:
Rayleigh scattering effect on visible light
Colloid (smaller particles):
Tyndall effect on visible light near the surface
Suspension (larger particles):
no significant effect on visible light
Gas Gas Gas mixture: air (oxygen and other gases in nitrogen) not possible
Liquid Aerosol: fog, mist, vapor, hair sprays, moisted air Aerosol: rain (also produces rainbows by refraction on water droplets)
Solid Solid aerosol: smoke, cloud, air particulates Solid aerosol: dust, sand storm, ice fog, pyroclastic flow
Gas Liquid Oxygen in water Foam: whipped cream, shaving cream Bubbling foam, boiling water, sodas and sparkling beverages
Liquid Alcoholic beverages (cocktails), sirups Emulsion: miniemulsion, microemulsion, milk, mayonnaise, hand cream, hydrated soap unstable emulsion of a soap bubble (at ambient temperature, with iridescent effect on light caused by evaporation of water; the suspension of liquids is still maintained by surfacic tension with the gas inside and outside the bubble and surfactants effects decreasing with evaporation; finally the bubble will pop when there's no more emulsion and the shearing effect of micelles will outweight the surface tension lost by evaporation of water out of them)
Solid Sugar in water Sol: pigmented ink, blood Mud (soil, clay or silt particles suspended in water, lahar, quicksand), wet plaster/cement/concrete, chalk powder suspended in water, lava flow (mix of melted and solid rock), melting ice creams
Gas Solid Hydrogen in metals Solid foam: aerogel, styrofoam, pumice
Liquid Amalgam (mercury in gold), hexane in paraffin wax Gel: agar, gelatin, silicagel, opal; frozen ice creams
Solid Alloys, plasticizers in plastics Solid sol: cranberry glass natural rocks, dried plaster/cement/concrete, frozen soap bubble


फैलाव के उदाहरण

दूध एक पायस का एक सामान्य रूप से उद्धृत उदाहरण है, एक तरल का दूसरे तरल में एक विशिष्ट प्रकार का फैलाव जहां दो तरल पदार्थ अमिश्रणीय होते हैं। दूध में निलंबित वसा अणु माँ से नवजात शिशु को महत्वपूर्ण वसा में घुलनशील विटामिन और पोषक तत्वों के वितरण का एक तरीका प्रदान करते हैं।[10] दूध का यांत्रिक, थर्मल या एंजाइमेटिक उपचार इन वसा ग्लोब्यूल्स की अखंडता में हेरफेर करता है और इसके परिणामस्वरूप डेयरी उत्पादों की एक विस्तृत विविधता होती है।[11] ऑक्साइड फैलाव-मजबूत मिश्र धातु (ओडीएस) धातु के माध्यम में ऑक्साइड कण फैलाव का एक उदाहरण है, जो सामग्री के उच्च तापमान सहनशीलता में सुधार करता है। इसलिए इन मिश्र धातुओं के परमाणु ऊर्जा उद्योग में कई अनुप्रयोग हैं, जहां संचालन को बनाए रखने के लिए सामग्रियों को अत्यधिक उच्च तापमान का सामना करना पड़ता है।[12] तटीय जलभृतों का क्षरण जलभृत के अत्यधिक उपयोग के बाद जलभृत में समुद्री जल के घुसपैठ और जलभृत में फैलाव का प्रत्यक्ष परिणाम है। जब एक जलभृत मानव उपयोग के लिए समाप्त हो जाता है, तो यह अन्य क्षेत्रों से आने वाले भूजल द्वारा स्वाभाविक रूप से भर दिया जाता है। तटीय जलभृतों के मामले में, पानी की आपूर्ति एक तरफ भूमि सीमा और दूसरी तरफ समुद्री सीमा दोनों से भर दी जाती है। अत्यधिक निर्वहन के बाद, समुद्र की सीमा से खारा पानी जलभृत में प्रवेश करेगा और मीठे पानी के माध्यम में फैल जाएगा, जिससे मानव उपयोग के लिए जलभृत की व्यवहार्यता को खतरा होगा।[13] तटीय जलभृतों में समुद्री जल घुसपैठ के कई अलग-अलग समाधान प्रस्तावित किए गए हैं, जिनमें कृत्रिम पुनर्भरण के इंजीनियरिंग तरीके और समुद्री सीमा पर भौतिक बाधाओं को लागू करना शामिल है।[14] रिसाव के प्रभाव को कम करने और तेल कणों के क्षरण को बढ़ावा देने के लिए तेल रिसाव में रासायनिक फैलाव का उपयोग किया जाता है। डिस्पर्सेंट पानी की सतह पर मौजूद तेल के पूल को पानी में फैलने वाली छोटी बूंदों में प्रभावी रूप से अलग करते हैं, जो समुद्री जीव विज्ञान और तटीय वन्यजीवों पर किसी और संदूषण या प्रभाव को रोकने के लिए पानी में तेल की समग्र एकाग्रता को कम करता है।[15]


संदर्भ

  1. Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011). "Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" (PDF). Pure and Applied Chemistry. 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03. S2CID 96812603.
  2. Richard G. Jones; Edward S. Wilks; W. Val Metanomski; Jaroslav Kahovec; Michael Hess; Robert Stepto; Tatsuki Kitayama, eds. (2009). Compendium of Polymer Terminology and Nomenclature (IUPAC Recommendations 2008) (2nd ed.). RSC Publ. p. 464. ISBN 978-0-85404-491-7.
  3. NALWA, H (2000), "Index for Volume 3", Handbook of Nanostructured Materials and Nanotechnology, Elsevier, pp. 585–591, doi:10.1016/b978-012513760-7/50068-x, ISBN 9780125137607, S2CID 183806092
  4. 4.0 4.1 Jacob., Bear (2013). झरझरा मीडिया में तरल पदार्थ की गतिशीलता।. Dover Publications. ISBN 978-1306340533. OCLC 868271872.
  5. Mauri, Roberto (May 1991). "झरझरा मीडिया में फैलाव, संवहन और प्रतिक्रिया". Physics of Fluids A: Fluid Dynamics (in English). 3 (5): 743–756. Bibcode:1991PhFlA...3..743M. doi:10.1063/1.858007. ISSN 0899-8213.
  6. Stefaniak, Aleksandr B. (2017). "Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials". In Mansfield, Elisabeth; Kaiser, Debra L.; Fujita, Daisuke; Van de Voorde, Marcel (eds.). मैट्रोलोजी और नैनोटेक्नोलॉजी का मानकीकरण (in English). Wiley-VCH Verlag. pp. 151–174. doi:10.1002/9783527800308.ch8. ISBN 9783527800308.
  7. Powers, Kevin W.; Palazuelos, Maria; Moudgil, Brij M.; Roberts, Stephen M. (2007-01-01). "विषैले अध्ययनों के लिए नैनोकणों के आकार, आकार और फैलाव की स्थिति का वर्णन". Nanotoxicology. 1 (1): 42–51. doi:10.1080/17435390701314902. ISSN 1743-5390. S2CID 137174566.
  8. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
  9. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
  10. Singh, Harjinder; Gallier, Sophie (July 2017). "Nature's complex emulsion: The fat globules of milk". Food Hydrocolloids. 68: 81–89. doi:10.1016/j.foodhyd.2016.10.011. ISSN 0268-005X.
  11. Lopez, Christelle (2005-07-01). "डेयरी उत्पादों में दुग्ध वसा की अधिआण्विक संरचना पर ध्यान दें" (PDF). Reproduction, Nutrition, Development (in English). 45 (4): 497–511. doi:10.1051/rnd:2005034. ISSN 0926-5287. PMID 16045897.
  12. Oak Ridge National Laboratory; United States; Department of Energy; United States; Department of Energy; Office of Scientific and Technical Information (1998). ऑक्साइड फैलाव का विकास संलयन के लिए फेरिटिक स्टील्स को मजबूत करता है। (in English). Washington, D.C.: United States. Dept. of Energy. doi:10.2172/335389. OCLC 925467978. OSTI 335389.
  13. Frind, Emil O. (June 1982). "निरंतर तटीय एक्विफर-एक्विटर्ड सिस्टम में समुद्री जल घुसपैठ". Advances in Water Resources. 5 (2): 89–97. Bibcode:1982AdWR....5...89F. doi:10.1016/0309-1708(82)90050-1. ISSN 0309-1708.
  14. Luyun, Roger; Momii, Kazuro; Nakagawa, Kei (2011). "समुद्री जल घुसपैठ पर पुनर्भरण कुओं और प्रवाह बाधाओं के प्रभाव". Groundwater (in English). 49 (2): 239–249. doi:10.1111/j.1745-6584.2010.00719.x. ISSN 1745-6584. PMID 20533955. S2CID 205907329.
  15. Lessard, R.R; DeMarco, G (Feb 2000). "तेल रिसाव फैलाने वालों का महत्व". Spill Science & Technology Bulletin (in English). 6 (1): 59–68. doi:10.1016/S1353-2561(99)00061-4.