लैंथेनाइड संकुचन

From Vigyanwiki
Revision as of 15:19, 18 May 2023 by alpha>Indicwiki (Created page with "{{short description|Decrease of ionic radii across the lanthanide series}} लैंथेनाइड संकुचन परमाणु संख्या 57, ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

लैंथेनाइड संकुचन परमाणु संख्या 57, लेण्टेनियुम से 71, ल्यूटेशियम तक रासायनिक तत्व के परमाणु त्रिज्या/आयनिक त्रिज्या में अपेक्षा से अधिक कमी है, जिसके परिणामस्वरूप अन्यथा अपेक्षित परमाणु त्रिज्या/आयनिक त्रिज्या से छोटा होता है। बाद के तत्व 72, हेफ़नियम से शुरू होते हैं।[1][2][3] यह शब्द नार्वेजियन भू-रसायनज्ञ विक्टर गोल्डश्मिड्ट द्वारा अपनी श्रृंखला जियोकेमिशे वर्टेइलुंग्सगेसेट डेर एलिमेंट (तत्वों के भू-रासायनिक वितरण कानून) में गढ़ा गया था।[4]

Element Atomic electron
configuration
(all begin with [Xe])
Ln3+ electron
configuration
Ln3+ radius (pm)
(6-coordinate)
La 5d16s2 4f0 103
Ce 4f15d16s2 4f1 102
Pr 4f36s2 4f2 99
Nd 4f46s2 4f3 98.3
Pm 4f56s2 4f4 97
Sm 4f66s2 4f5 95.8
Eu 4f76s2 4f6 94.7
Gd 4f75d16s2 4f7 93.8
Tb 4f96s2 4f8 92.3
Dy 4f106s2 4f9 91.2
Ho 4f116s2 4f10 90.1
Er 4f126s2 4f11 89
Tm 4f136s2 4f12 88
Yb 4f146s2 4f13 86.8
Lu 4f145d16s2 4f14 86.1


कारण

प्रभाव 4f इलेक्ट्रॉनों द्वारा परमाणु आवेश (इलेक्ट्रॉनों पर परमाणु आकर्षक बल) के खराब परिरक्षण प्रभाव के परिणामस्वरूप होता है; 6s इलेक्ट्रॉन नाभिक की ओर आकर्षित होते हैं, इस प्रकार एक छोटे परमाणु त्रिज्या का परिणाम होता है।

एकल-इलेक्ट्रॉन परमाणुओं में, नाभिक से एक इलेक्ट्रॉन का औसत पृथक्करण उस इलेक्ट्रोनिक विन्यास द्वारा निर्धारित किया जाता है, जो नाभिक पर बढ़ते चार्ज के साथ घटता है; यह, बदले में, परमाणु त्रिज्या में कमी की ओर जाता है। बहु-इलेक्ट्रॉन परमाणुओं में, परमाणु आवेश में वृद्धि के कारण त्रिज्या में कमी इलेक्ट्रॉनों के बीच इलेक्ट्रोस्टैटिक प्रतिकर्षण को बढ़ाकर आंशिक रूप से ऑफसेट की जाती है।

विशेष रूप से, एक परिरक्षण प्रभाव संचालित होता है: अर्थात, जैसे ही इलेक्ट्रॉनों को बाहरी गोले में जोड़ा जाता है, पहले से मौजूद इलेक्ट्रॉन परमाणु आवेश से बाहरी इलेक्ट्रॉनों को ढाल देते हैं, जिससे उन्हें नाभिक पर कम प्रभावी आवेश का अनुभव होता है। आंतरिक इलेक्ट्रॉनों द्वारा लगाया गया परिरक्षण प्रभाव s > p > d > f के क्रम में घटता है।

आमतौर पर, जैसे ही एक अवधि में एक विशेष उपकोश भरा जाता है, परमाणु त्रिज्या घट जाती है। यह प्रभाव विशेष रूप से लैंथेनाइड्स के मामले में स्पष्ट होता है, क्योंकि 4f सबशेल जो इन तत्वों में भरा होता है, बाहरी शेल (n = 5 और n = 6) इलेक्ट्रॉनों को बचाने में बहुत प्रभावी नहीं होता है। इस प्रकार परिरक्षण प्रभाव बढ़ते परमाणु आवेश के कारण त्रिज्या में कमी का मुकाबला करने में कम सक्षम है। इससे लैंथेनाइड संकुचन होता है। आयनिक त्रिज्या 103 pm से लेण्टेनियुम (III) के लिए 86.1 pm से ल्यूटेटियम (III) के लिए गिरती है।

लैंथेनाइड संकुचन का लगभग 10% सापेक्षतावादी प्रभावों के लिए जिम्मेदार ठहराया गया है।[5]


प्रभाव

लैंथेनाइड अवधि में बाहरी शेल इलेक्ट्रॉनों के बढ़ते आकर्षण के परिणामों को आयनिक रेडी में कमी सहित लैंथेनाइड श्रृंखला पर प्रभाव में विभाजित किया जा सकता है, और निम्नलिखित या पोस्ट-लैंथेनाइड तत्वों पर प्रभाव पड़ता है।

लैंथेनाइड्स के गुण

लैंथेनाइड्स की आयनिक त्रिज्या 103 picometre (लैंथेनम) से घट जाती है3+) से 86 बजे (पेरिस3+) लैंथेनाइड श्रृंखला में, क्योंकि इलेक्ट्रॉनों को 4f शेल में जोड़ा जाता है। यह पहला f कोश पूरे 5s और 5p कोशों के अंदर है (साथ ही तटस्थ परमाणु में 6s कोश); 4f खोल परमाणु नाभिक के पास अच्छी तरह से स्थानीयकृत है और इसका रासायनिक बंधन पर बहुत कम प्रभाव पड़ता है। हालाँकि, परमाणु और आयनिक त्रिज्या में कमी उनके रसायन विज्ञान को प्रभावित करती है। लैंथेनाइड संकुचन के बिना, लैंथेनाइड्स की एक रासायनिक पृथक्करण प्रक्रिया अत्यंत कठिन होगी। हालांकि, यह संकुचन समान समूह की अवधि 5 और अवधि 6 संक्रमण धातुओं के रासायनिक पृथक्करण को कठिन बना देता है।

विकर्स कठोरता, ब्रिनेल स्केल, घनत्व और गलनांक को लैंथेनम से ल्यूटेटियम तक बढ़ाने की एक सामान्य प्रवृत्ति है (युरोपियम और ytterbium सबसे उल्लेखनीय अपवाद हैं; धात्विक अवस्था में, वे त्रिसंयोजक के बजाय द्विसंयोजक हैं)। लुटेटियम सबसे कठोर और सघन लैंथेनाइड है और इसका गलनांक सबसे अधिक है।

Element Vickers
hardness
(MPa)
Brinell
hardness
(MPa)
Density
(g/cm3)
Melting
point
(K)
Atomic
radius
(pm)
Lanthanum 491 363 6.162 1193 187
Cerium 270 412 6.770 1068 181.8
Praseodymium 400 481 6.77 1208 182
Neodymium 343 265 7.01 1297 181
Promethium ? ? 7.26 1315 183
Samarium 412 441 7.52 1345 180
Europium 167 ? 5.264 1099 180
Gadolinium 570 ? 7.90 1585 180
Terbium 863 677 8.23 1629 177
Dysprosium 540 500 8.540 1680 178
Holmium 481 746 8.79 1734 176
Erbium 589 814 9.066 1802 176
Thulium 520 471 9.32 1818 176
Ytterbium 206 343 6.90 1097 176
Lutetium 1160 893 9.841 1925 174


लान्थेनाइड्स के बाद का प्रभाव

आवर्त सारणी में लैंथेनाइड्स के बाद के तत्व लैंथेनाइड संकुचन से प्रभावित होते हैं। अवधि -6 संक्रमण धातुओं की त्रिज्या अपेक्षा से छोटी होती है यदि कोई लैंथेनाइड्स नहीं होता, और वास्तव में अवधि -5 संक्रमण धातुओं की त्रिज्या के समान ही होता है क्योंकि अतिरिक्त इलेक्ट्रॉन शेल का प्रभाव लगभग पूरी तरह से ऑफसेट होता है। लैंथेनाइड संकुचन।[2]

उदाहरण के लिए, धातु zirconium, Zr (एक अवधि-5 संक्रमण तत्व) की परमाणु त्रिज्या 155 pm है[6] (परमाणु त्रिज्या#नोट्स) और हेफ़नियम, Hf (संबंधित अवधि -6 तत्व), 159 pm है।[7] Zr का आयनिक त्रिज्या4+ 84 pm है और Hf4+ रात 83 बजे है।[8] त्रिज्याएँ बहुत समान हैं, भले ही इलेक्ट्रॉनों की संख्या 40 से 72 तक बढ़ जाती है और परमाणु द्रव्यमान 91.22 से बढ़कर 178.49 g/mol हो जाता है। द्रव्यमान में वृद्धि और अपरिवर्तित त्रिज्या के कारण घनत्व में 6.51 से 13.35 ग्राम/सेमी की भारी वृद्धि हुई है।3</उप>।

ज़िरकोनियम और हेफ़नियम, इसलिए, बहुत समान रासायनिक व्यवहार करते हैं, समान त्रिज्या और इलेक्ट्रॉन विन्यास रखते हैं। परिसरों की जाली ऊर्जा, सॉल्वैंशन और स्थिरता स्थिरांक जैसे त्रिज्या-निर्भर गुण भी समान हैं।[1]इस समानता के कारण, हेफ़नियम केवल जिरकोनियम के साथ पाया जाता है, जो बहुत अधिक प्रचुर मात्रा में है। इसका मतलब यह भी था कि 1789 में जिरकोनियम की खोज के 134 साल बाद 1 9 23 में हेफ़नियम एक अलग तत्व के रूप में हेफ़नियम # इतिहास था। दूसरी ओर, टाइटेनियम एक ही समूह में है, लेकिन उन दो धातुओं से काफी अलग है जो शायद ही कभी पाया जाता है उनके साथ।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. pp. 536, 649, 743. ISBN 978-0-13-039913-7.
  2. 2.0 2.1 Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, pp. 776, 955, ISBN 0-471-84997-9
  3. Jolly, William L. Modern Inorganic Chemistry, McGraw-Hill 1984, p. 22
  4. Goldschmidt, Victor M. "Geochemische Verteilungsgesetze der Elemente", Part V "Isomorphie und Polymorphie der Sesquioxyde. Die Lanthaniden-Kontraktion und ihre Konsequenzen", Oslo, 1925
  5. Pekka Pyykko (1988). "संरचनात्मक रसायन विज्ञान में सापेक्ष प्रभाव". Chem. Rev. 88 (3): 563–594. doi:10.1021/cr00085a006.
  6. "Zirconium | Zr (Element) - PubChem".
  7. "Hafnium".
  8. Nielsen, Ralph H.; Updated by Staff (2013-04-19), "Hafnium and Hafnium Compounds", in John Wiley & Sons, Inc. (ed.), Kirk-Othmer Encyclopedia of Chemical Technology (in English), Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 0801061414090512.a01.pub3, doi:10.1002/0471238961.0801061414090512.a01.pub3, ISBN 978-0-471-23896-6, retrieved 2022-11-25
  9. "Lanthanide Contraction - Chemistry LibreTexts".


बाहरी संबंध