ध्रुवीय वृत्त (ज्यामिति)
ज्यामिति में, किसी त्रिभुज का ध्रुवीय वृत्त वह वृत्त होता है जिसका केंद्र त्रिभुज का लंबकेंद्र होता है और जिसका वर्ग त्रिज्या होता है:
जहां A, B, C त्रिभुज के दोनों शीर्षों और उन शीर्षों पर कोण के माप को दर्शाते हैं, H लंबकेन्द्र (त्रिकोण की ऊंचाईयों का प्रतिच्छेदन) है, D, E, F शीर्षों A, B, C से ऊंचाईयों के कोने हैं क्रमशः, R त्रिभुज की परित्रिज्या (इसके परिबद्ध वृत्त की त्रिज्या) है, और a, b, c क्रमशः शीर्ष A, B, C के विपरीत त्रिभुज की भुजाओं की लंबाई हैं।[1]: p. 176
त्रिज्या सूत्र के पहले भाग इस तथ्य को प्रतिबिंबित करते हैं कि लंबकेन्द्र ऊंचाई को समान उत्पादों के खंड जोड़े में विभाजित करता है। त्रिज्या के त्रिकोणमितीय सूत्र से पता चलता है कि ध्रुवीय वृत्त का वास्तविक अस्तित्व केवल तभी होता है जब त्रिभुज अधिक कोण हो, इसलिए इसका एक कोण अधिक कोण होता है और इसलिए इसमें एक नकारात्मक कोसाइन होता है।
गुण
ऑर्थोसेन्ट्रिक प्रणाली में दो त्रिभुजों के कोई भी दो ध्रुवीय वृत्त ओर्थोगोनल होते हैं।[1]: p. 177
पूर्ण चतुर्भुज के त्रिभुजों के ध्रुवीय वृत्त एक समाक्षीय वृत्त प्रणाली बनाते हैं।[1]: p. 179
त्रिभुज का परिवृत्त, उसका नौ-बिंदु वाला वृत्त, उसका ध्रुवीय वृत्त और उसके स्पर्शरेखा त्रिभुज का परिवृत्त समाक्षीय होते हैं।[2]: p. 241
संदर्भ
- ↑ 1.0 1.1 1.2 Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).
- ↑ Altshiller-Court, Nathan, College Geometry, Dover Publications, 2007 (orig. 1952).