विद्युत चुम्बकीय क्षेत्र सॉल्वर

From Vigyanwiki
Revision as of 10:30, 19 June 2023 by alpha>Indicwiki (Created page with "{{Short description|Computer programs that solve Maxwell's equations}} {{Use American English|date = April 2019}} इलेक्ट्रोमैग्नेटिक फी...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

इलेक्ट्रोमैग्नेटिक फील्ड सॉल्वर (या कभी-कभी सिर्फ फील्ड सॉल्वर) विशेष प्रोग्राम होते हैं जो मैक्सवेल के समीकरणों को सीधे (एक सबसेट) हल करते हैं। वे इलेक्ट्रॉनिक डिजाइन स्वचालन, या EDA के क्षेत्र का एक हिस्सा हैं, और आमतौर पर एकीकृत सर्किट और मुद्रित सर्किट बोर्ड के डिज़ाइन में उपयोग किए जाते हैं। उनका उपयोग तब किया जाता है जब पहले सिद्धांतों या उच्चतम सटीकता से समाधान की आवश्यकता होती है।

परिचय

भौतिक सत्यापन के विभिन्न पहलुओं जैसे स्थिर समय विश्लेषण, सिग्नल अखंडता, सब्सट्रेट युग्मन और पावर ग्रिड विश्लेषण के लिए परजीवी निष्कर्षण आवश्यक है। जैसे-जैसे सर्किट की गति और घनत्व में वृद्धि हुई है, अधिक व्यापक और अधिक जटिल इंटरकनेक्ट संरचनाओं के लिए परजीवी समाई प्रभावों के लिए सटीक रूप से हिसाब लगाने की आवश्यकता बढ़ी है। इसके अलावा, विद्युत चुम्बकीय जटिलता भी बढ़ी है, विद्युत प्रतिरोध और समाई से अधिष्ठापन तक, और अब पूर्ण विद्युत चुम्बकीय विकिरण प्रसार भी। एकीकृत इंडिकेटर्स जैसे निष्क्रिय उपकरणों के विश्लेषण के लिए जटिलता में यह वृद्धि भी बढ़ी है। इलेक्ट्रोमैग्नेटिक व्यवहार मैक्सवेल के समीकरणों द्वारा नियंत्रित होता है, और सभी लेआउट निष्कर्षण के लिए मैक्सवेल के समीकरणों के किसी न किसी रूप को हल करने की आवश्यकता होती है। वह रूप एक साधारण विश्लेषणात्मक समांतर प्लेट समाई समीकरण हो सकता है या तरंग प्रसार के साथ एक जटिल 3डी ज्यामिति के लिए पूर्ण संख्यात्मक समाधान शामिल हो सकता है। लेआउट निष्कर्षण में, सरल या सरलीकृत ज्यामिति के लिए विश्लेषणात्मक सूत्रों का उपयोग किया जा सकता है जहां गति की तुलना में सटीकता कम महत्वपूर्ण है। फिर भी, जब ज्यामितीय विन्यास सरल नहीं है, और सटीकता की मांग सरलीकरण की अनुमति नहीं देती है, मैक्सवेल के समीकरणों के उपयुक्त रूप का एक संख्यात्मक समाधान नियोजित किया जाना चाहिए।

मैक्सवेल के समीकरणों का उपयुक्त रूप आम तौर पर विधियों के दो वर्गों में से एक द्वारा हल किया जाता है। पहला गवर्निंग समीकरणों के विभेदक रूप का उपयोग करता है और पूरे डोमेन के विवेकीकरण (मेशिंग) की आवश्यकता होती है जिसमें विद्युत चुम्बकीय क्षेत्र निवास करते हैं। इस प्रथम श्रेणी में दो सबसे आम दृष्टिकोण परिमित अंतर (FD) और परिमित तत्व (FEM) विधियाँ हैं। परिणामी रैखिक बीजगणितीय प्रणाली (मैट्रिक्स) जिसे हल किया जाना चाहिए वह बड़ा है लेकिन विरल मैट्रिक्स (बहुत कम गैर-शून्य प्रविष्टियाँ हैं)। इन प्रणालियों को हल करने के लिए विरल रेखीय समाधान विधियों, जैसे विरल गुणनखंड, संयुग्म-ढाल, या मल्टीग्रिड विधियों का उपयोग किया जा सकता है, जिनमें से सर्वश्रेष्ठ के लिए CPU समय और O(N) की मेमोरी की आवश्यकता होती है। समय, जहां N विवेकाधीन तत्वों की संख्या है। हालाँकि, इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (EDA) में अधिकांश समस्याएँ खुली समस्याएँ हैं, जिन्हें बाहरी समस्याएँ भी कहा जाता है, और चूँकि क्षेत्र धीरे-धीरे अनंत की ओर घटते हैं, इन विधियों के लिए बहुत बड़े N की आवश्यकता हो सकती है।

विधियों की दूसरी श्रेणी अभिन्न समीकरण विधियाँ हैं जिनके लिए केवल विद्युत चुम्बकीय क्षेत्र स्रोतों के विवेक की आवश्यकता होती है। वे स्रोत भौतिक मात्राएँ हो सकते हैं, जैसे समाई समस्या के लिए सतह आवेश घनत्व, या ग्रीन के प्रमेय को लागू करने से उत्पन्न गणितीय सार। जब स्रोत केवल त्रि-आयामी समस्याओं के लिए द्वि-आयामी सतहों पर मौजूद होते हैं, तो विधि को अक्सर क्षणों की विधि (विद्युत चुम्बकीय) (एमओएम) या सीमा तत्व विधि (बीईएम) कहा जाता है। खुली समस्याओं के लिए, फ़ील्ड के स्रोत स्वयं फ़ील्ड्स की तुलना में बहुत छोटे डोमेन में मौजूद होते हैं, और इस प्रकार अभिन्न समीकरण विधियों द्वारा उत्पन्न रैखिक प्रणालियों का आकार FD या FEM से बहुत छोटा होता है। इंटीग्रल इक्वेशन मेथड्स, हालांकि, घने (सभी प्रविष्टियां गैर-शून्य हैं) लीनियर सिस्टम उत्पन्न करती हैं, ऐसे तरीकों को केवल छोटी समस्याओं के लिए FD या FEM के लिए बेहतर बनाती हैं। ऐसी प्रणालियों के लिए O(n2) स्टोर करने के लिए मेमोरी और O(n3) प्रत्यक्ष गाऊसी विलोपन के माध्यम से हल करने के लिए या, सर्वोत्तम रूप से, O(n2) यदि पुनरावृत्त रूप से हल किया जाता है। सर्किट की गति और घनत्व में वृद्धि के लिए तेजी से जटिल इंटरकनेक्ट के समाधान की आवश्यकता होती है, बढ़ती समस्या के आकार के साथ कम्प्यूटेशनल लागत की इन उच्च वृद्धि दर के कारण घने अभिन्न समीकरण दृष्टिकोण को अनुपयुक्त बना देता है।

पिछले दो दशकों में, डिफरेंशियल और इंटीग्रल इक्वेशन एप्रोच, साथ ही यादृच्छिक चाल मेथड्स पर आधारित नए एप्रोच दोनों को बेहतर बनाने के लिए बहुत काम किया गया है।[1][2] एफडी और एफईएम दृष्टिकोणों द्वारा आवश्यक विवेक को कम करने के तरीकों ने आवश्यक तत्वों की संख्या को बहुत कम कर दिया है।[3][4] विरलीकरण तकनीकों, जिसे कभी-कभी मैट्रिक्स संपीड़न, त्वरण, या मैट्रिक्स-मुक्त तकनीक भी कहा जाता है, के कारण इंटीग्रल इक्वेशन एप्रोच इंटरकनेक्ट एक्सट्रैक्शन के लिए विशेष रूप से लोकप्रिय हो गए हैं, जिससे इंटीग्रल समीकरण विधियों के भंडारण और समाधान समय में लगभग O(n) वृद्धि हुई है।[5][6][7][8][9][10][11] समाई और अधिष्ठापन निष्कर्षण समस्याओं को हल करने के लिए आमतौर पर आईसी उद्योग में स्पार्सिफाइड इंटीग्रल समीकरण तकनीकों का उपयोग किया जाता है। कैपेसिटेंस एक्सट्रैक्शन के लिए रैंडम-वॉक के तरीके काफी परिपक्व हो गए हैं। पूर्ण मैक्सवेल के समीकरणों (पूर्ण-तरंग) के समाधान की आवश्यकता वाली समस्याओं के लिए, अंतर और अभिन्न समीकरण दृष्टिकोण दोनों सामान्य हैं।

यह भी देखें

संदर्भ

  1. Y. L. Le Coz and R. B. Iverson. A stochastic algorithm for high-speed capacitance extraction in integrated circuits. Solid State Electronics, 35(7):1005-1012, 1992.
  2. Yu, Wenjian; Zhuang, Hao; Zhang, Chao; Hu, Gang; Liu, Zhi (2013). "RWCap: A Floating Random Walk Solver for 3-D Capacitance Extraction of Very-Large-Scale Integration Interconnects". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 32 (3): 353–366. CiteSeerX 10.1.1.719.3986. doi:10.1109/TCAD.2012.2224346. S2CID 16351864.
  3. O. M. Ramahi; B. Archambeault (1995). "ईएमसी सिमुलेशन के लिए परिमित-अंतर समय-डोमेन अनुप्रयोगों में अनुकूली अवशोषित सीमा की स्थिति". IEEE Trans. Electromagn. Compat. 37 (4): 580–583. doi:10.1109/15.477343.
  4. J.C. Veihl; R. Mittra (Feb 1996). "परिमित-अंतर समय-डोमेन जाल ट्रंकेशन के लिए बेरेंजर की पूरी तरह से मेल खाने वाली परत (पीएमएल) का एक कुशल कार्यान्वयन". IEEE Microwave and Guided Wave Letters. 6 (2): 94. doi:10.1109/75.482000.
  5. L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. M.I.T. Press, Cambridge, Massachusetts, 1988.
  6. V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics, 60(2):187-207, September 15, 1985.
  7. K. Nabors; J. White (November 1991). "Fastcap: A multipole accelerated 3-D capacitance extraction program". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 10 (11): 1447–1459. CiteSeerX 10.1.1.19.9745. doi:10.1109/43.97624.
  8. A. Brandt. Multilevel computations of integral transforms and particle interactions with oscillatory kernels. Computer Physics Communications, 65:24-38, 1991.
  9. J.R. Phillips; J.K. White (October 1997). "A precorrected-FFT method for electrostatic analysis of complicated 3-d structures". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 16 (10): 1059–1072. CiteSeerX 10.1.1.20.791. doi:10.1109/43.662670.
  10. S. Kapur; D.E. Long (Oct–Dec 1998). "IES3: Efficient electrostatic and electromagnetic simulation". IEEE Computational Science and Engineering. 5 (4): 60–67. doi:10.1109/99.735896.
  11. J.M. Song; C.C. Lu; W.C. Chew; S.W. Lee (June 1998). "फास्ट इलिनोइस सॉल्वर कोड (FISC)". IEEE Antennas and Propagation Magazine. 40 (3): 27–34. Bibcode:1998IAPM...40...27S. CiteSeerX 10.1.1.7.8263. doi:10.1109/74.706067.
  • Electronic Design Automation For Integrated Circuits Handbook, by Lavagno, Martin, and Scheffer, ISBN 0-8493-3096-3 A survey of the field of electronic design automation. This summary was derived (with permission) from Vol II, Chapter 26, High Accuracy Parasitic Extraction, by Mattan Kamon and Ralph Iverson.