हेब्बियन सिद्धांत

From Vigyanwiki
Revision as of 16:20, 26 June 2023 by alpha>Indicwiki (Created page with "{{short description|Neuroscientific theory}} हेब्बियन सिद्धांत एक neuropsychological सिद्धांत है जो दाव...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

हेब्बियन सिद्धांत एक neuropsychological सिद्धांत है जो दावा करता है कि प्रीसानेप्टिक कोशिका की बार-बार और पोस्टसिनेप्टिक सेल की लगातार उत्तेजना से निष्कर्ष प्रभावकारिता में वृद्धि होती है। यह सीखने की प्रक्रिया के दौरान मस्तिष्क के न्यूरॉन्स के अनुकूलन, सूत्रयुग्मक सुनम्यता को समझाने का एक प्रयास है। इसे डोनाल्ड हेब्ब ने अपनी 1949 की पुस्तक व्यवहार का संगठन में पेश किया था।[1] इस सिद्धांत को हेब्ब का नियम, हेब्ब का अभिधारणा और कोशिका संयोजन सिद्धांत भी कहा जाता है। हेब्ब इसे इस प्रकार बताते हैं:

<ब्लॉककोट>आइए मान लें कि एक प्रतिध्वनि गतिविधि (या ट्रेस) की दृढ़ता या पुनरावृत्ति स्थायी सेलुलर परिवर्तनों को प्रेरित करती है जो इसकी स्थिरता को बढ़ाती है। ... जब कोशिका का एक अक्षतंतु कोशिका बी को उत्तेजित करने के लिए पर्याप्त निकट होता है और बार-बार या लगातार इसे सक्रिय करने में भाग लेता है, तो एक या दोनों कोशिकाओं में कुछ विकास प्रक्रिया या चयापचय परिवर्तन होता है की दक्षता, बी को सक्रिय करने वाली कोशिकाओं में से एक के रूप में बढ़ जाती है।[1]</ब्लॉककोट>

सिद्धांत को अक्सर उन कोशिकाओं के रूप में संक्षेपित किया जाता है जो एक साथ तार से प्रज्वलित होती हैं।[2] हालाँकि, हेब्ब ने इस बात पर जोर दिया कि सेल ए को सेल बी को फायर करने में भाग लेने की जरूरत है, और ऐसी कार्य-कारणता केवल तभी हो सकती है जब सेल ए ठीक पहले फायर करता है, सेल बी के साथ उसी समय नहीं। हेब्ब के काम में कार्य-कारण के इस पहलू ने पूर्वाभास दिया कि अब क्या है स्पाइक-टाइमिंग-निर्भर प्लास्टिसिटी के बारे में जाना जाता है, जिसके लिए अस्थायी प्राथमिकता की आवश्यकता होती है।[3] सिद्धांत सहयोगी शिक्षा या हेब्बियन शिक्षा को समझाने का प्रयास करता है, जिसमें कोशिकाओं के एक साथ सक्रिय होने से उन कोशिकाओं के बीच सिनैप्टिक ताकत में स्पष्ट वृद्धि होती है। यह शिक्षा और स्मृति पुनर्वास के लिए त्रुटि रहित शिक्षण विधियों के लिए एक जैविक आधार भी प्रदान करता है। संज्ञानात्मक कार्य में कृत्रिम तंत्रिका नेटवर्क के अध्ययन में, इसे अक्सर बिना पर्यवेक्षित शिक्षण का तंत्रिका संबंधी आधार माना जाता है।

हेब्बियन एनग्राम्स और सेल असेंबली सिद्धांत

हेब्बियन सिद्धांत चिंता करता है कि न्यूरॉन्स एंग्राम (न्यूरोसाइकोलॉजी) बनने के लिए खुद को कैसे जोड़ सकते हैं। कोशिका संयोजनों के स्वरूप और कार्य पर हेब्ब के सिद्धांतों को निम्नलिखित से समझा जा सकता है:[1]: 70 

सामान्य विचार पुराना है, कि कोई भी दो कोशिकाएँ या कोशिकाओं की प्रणालियाँ जो एक ही समय में बार-बार सक्रिय होती हैं, वे 'संबद्ध' हो जाती हैं ताकि एक में गतिविधि दूसरे में गतिविधि को सुविधाजनक बना सके।

हेब्ब ने यह भी लिखा:[1]: 63 

जब एक कोशिका बार-बार दूसरी कोशिका को सक्रिय करने में सहायता करती है, तो पहली कोशिका का अक्षतंतु दूसरी कोशिका के सोमा के संपर्क में सिनैप्टिक नॉब विकसित करता है (या यदि वे पहले से मौजूद हैं तो उन्हें बड़ा करता है)।

[डी। एलन ऑलपोर्ट] सेल असेंबली सिद्धांत और ऑटो-एसोसिएशन की अवधारणा की तर्ज पर एनग्राम बनाने में इसकी भूमिका के बारे में अतिरिक्त विचार प्रस्तुत करता है, जिसका वर्णन इस प्रकार है:

<ब्लॉककोट>यदि किसी सिस्टम में इनपुट के कारण गतिविधि का एक ही पैटर्न बार-बार होता है, तो उस पैटर्न को बनाने वाले सक्रिय तत्वों का सेट तेजी से दृढ़ता से परस्पर जुड़ा हुआ हो जाएगा। अर्थात्, प्रत्येक तत्व हर दूसरे तत्व को चालू कर देगा और (नकारात्मक भार के साथ) उन तत्वों को बंद कर देगा जो पैटर्न का हिस्सा नहीं बनते हैं। इसे दूसरे तरीके से कहें तो, संपूर्ण पैटर्न 'ऑटो-एसोसिएटेड' हो जाएगा। हम सीखे हुए (ऑटो-संबद्ध) पैटर्न को एनग्राम कह सकते हैं।[4]: 44 </ब्लॉककोट>

एरिक आर कैंडेल की प्रयोगशाला में काम#हेब्बियन सीखने के लिए प्रायोगिक समर्थन ने समुद्री गैस्ट्रोपॉड अप्लीसिया कैलिफ़ोर्निका में सिनैप्स पर हेब्बियन सीखने के तंत्र की भागीदारी के लिए सबूत प्रदान किए हैं।[citation needed] समुद्री अकशेरुकी जीवों में अध्ययन किए गए अपेक्षाकृत सरल परिधीय तंत्रिका तंत्र सिनैप्स के प्रयोगों की तुलना में कशेरुकियों के केंद्रीय तंत्रिका तंत्र सिनेप्स पर हेब्बियन सिनैप्स संशोधन तंत्र पर प्रयोगों को नियंत्रित करना अधिक कठिन है। कशेरुक न्यूरॉन्स (जैसे दीर्घकालिक पोटेंशिएशन) के बीच लंबे समय तक चलने वाले सिनैप्टिक परिवर्तनों पर अधिकांश काम में मस्तिष्क कोशिकाओं के गैर-शारीरिक प्रयोगात्मक उत्तेजना का उपयोग शामिल होता है। हालाँकि, कुछ शारीरिक रूप से प्रासंगिक सिनैप्स संशोधन तंत्र जिनका कशेरुकी मस्तिष्क में अध्ययन किया गया है, वे हेब्बियन प्रक्रियाओं के उदाहरण प्रतीत होते हैं। ऐसा ही एक अध्ययन[5] प्रयोगों के परिणामों की समीक्षा से संकेत मिलता है कि सिनैप्टिक शक्तियों में लंबे समय तक चलने वाले परिवर्तन हेब्बियन और गैर-हेब्बियन दोनों तंत्रों के माध्यम से काम करने वाली शारीरिक रूप से प्रासंगिक सिनैप्टिक गतिविधि से प्रेरित हो सकते हैं।

सिद्धांत

कृत्रिम न्यूरॉन्स और कृत्रिम तंत्रिका नेटवर्क के दृष्टिकोण से, हेब्ब के सिद्धांत को यह निर्धारित करने की एक विधि के रूप में वर्णित किया जा सकता है कि मॉडल न्यूरॉन्स के बीच वजन को कैसे बदला जाए। यदि दो न्यूरॉन्स एक साथ सक्रिय होते हैं तो उनके बीच का भार बढ़ जाता है, और यदि वे अलग-अलग सक्रिय होते हैं तो कम हो जाता है। जो नोड्स एक ही समय में या तो सकारात्मक या दोनों नकारात्मक होते हैं, उनमें मजबूत सकारात्मक भार होता है, जबकि जो विपरीत होते हैं, उनमें मजबूत नकारात्मक भार होता है।

निम्नलिखित हेब्बियन शिक्षा का एक सूत्रबद्ध वर्णन है: (कई अन्य विवरण संभव हैं)

कहाँ न्यूरॉन से कनेक्शन का भार है न्यूरॉन को और न्यूरॉन के लिए इनपुट . ध्यान दें कि यह पैटर्न लर्निंग है (प्रत्येक प्रशिक्षण उदाहरण के बाद वजन अपडेट किया जाता है)। हॉपफील्ड नेटवर्क में, कनेक्शन यदि शून्य पर सेट हैं (कोई रिफ्लेक्सिव कनेक्शन की अनुमति नहीं है)। बाइनरी न्यूरॉन्स (सक्रियण या तो 0 या 1) के साथ, कनेक्शन 1 पर सेट किया जाएगा यदि कनेक्टेड न्यूरॉन्स में पैटर्न के लिए समान सक्रियण है।

जब कई प्रशिक्षण पैटर्न का उपयोग किया जाता है तो अभिव्यक्ति व्यक्तिगत पैटर्न का औसत बन जाती है:

कहाँ न्यूरॉन से कनेक्शन का भार है न्यूरॉन को , प्रशिक्षण पैटर्न की संख्या है, न्यूरॉन के लिए वें इनपुट और <> सभी प्रशिक्षण पैटर्न का औसत है। यह युग के अनुसार सीख रहा है (सभी प्रशिक्षण उदाहरण प्रस्तुत किए जाने के बाद वजन अपडेट किया जाता है), अंतिम शब्द असतत और निरंतर प्रशिक्षण सेट दोनों पर लागू होता है। फिर से, हॉपफ़ील्ड नेटवर्क में, कनेक्शन यदि शून्य पर सेट हैं (कोई रिफ्लेक्सिव कनेक्शन नहीं)।

हेब्बियन सीखने की एक भिन्नता जो ब्लॉकिंग और कई अन्य तंत्रिका सीखने की घटनाओं को ध्यान में रखती है, हैरी नॉक का गणितीय मॉडल है।[6] हेटरोस्टैटिक सिद्धांत | क्लॉफ का मॉडल बहुत सारी जैविक घटनाओं को पुन: उत्पन्न करता है, और इसे लागू करना भी आसान है।

पर्यवेक्षित शिक्षण, स्थिरता और सामान्यीकरण से संबंध

हेब्बियन सीखने की सरल प्रकृति के कारण, जो केवल प्री- और पोस्ट-सिनैप्टिक गतिविधि के संयोग पर आधारित है, यह सहज रूप से स्पष्ट नहीं हो सकता है कि प्लास्टिसिटी का यह रूप सार्थक सीखने की ओर क्यों ले जाता है। हालाँकि, यह दिखाया जा सकता है कि हेब्बियन प्लास्टिसिटी इनपुट के सांख्यिकीय गुणों को इस तरह से उठाती है जिसे बिना पर्यवेक्षित शिक्षण के रूप में वर्गीकृत किया जा सकता है।

इसे गणितीय रूप से एक सरल उदाहरण में दिखाया जा सकता है। आइए हम दर के एकल दर-आधारित न्यूरॉन की सरलीकृत धारणा के तहत काम करें , जिनके इनपुट की दरें हैं . न्यूरॉन की प्रतिक्रिया इसे आमतौर पर इसके इनपुट के रैखिक संयोजन के रूप में वर्णित किया जाता है, , उसके बाद एक प्रतिक्रिया समारोह :

जैसा कि पिछले अनुभागों में परिभाषित किया गया है, हेब्बियन प्लास्टिसिटी सिनैप्टिक भार के समय में विकास का वर्णन करता है :

सरलता के लिए, एक पहचान प्रतिक्रिया फ़ंक्शन मान लें , हम लिख सकते हैं

या मैट्रिक्स (गणित) रूप में:

पिछले अध्याय की तरह, यदि युग के अनुसार प्रशिक्षण औसत रूप से किया जाता है असतत या निरंतर (समय) प्रशिक्षण सेट पर हो सकता है:

कहाँ अतिरिक्त धारणा के तहत इनपुट का सहसंबंध मैट्रिक्स है (अर्थात इनपुट का औसत शून्य है)। यह एक प्रणाली है युग्मित रैखिक अंतर समीकरण। तब से सममित मैट्रिक्स है, यह विकर्ण मैट्रिक्स भी है, और इसके ईजेनवेक्टर आधार पर काम करके समाधान पाया जा सकता है

कहाँ मनमाना स्थिरांक हैं, के eigenvectors हैं और उनके संगत eigenvalues. चूँकि एक सहसंबंध मैट्रिक्स हमेशा एक सकारात्मक-निश्चित मैट्रिक्स होता है, आइगेनवैल्यू सभी सकारात्मक होते हैं, और कोई भी आसानी से देख सकता है कि उपरोक्त समाधान हमेशा समय में तेजी से भिन्न कैसे होता है। हेब्ब के नियम के इस संस्करण के अस्थिर होने के कारण यह एक आंतरिक समस्या है, क्योंकि प्रमुख सिग्नल वाले किसी भी नेटवर्क में सिनैप्टिक भार तेजी से बढ़ेगा या घटेगा। सहज रूप से, इसका कारण यह है कि जब भी प्रीसिनेप्टिक न्यूरॉन पोस्टसिनेप्टिक न्यूरॉन को उत्तेजित करता है, तो उनके बीच का वजन प्रबल हो जाता है, जिससे भविष्य में और भी मजबूत उत्तेजना पैदा होती है, और इसी तरह, आत्म-सुदृढ़ तरीके से। कोई सोच सकता है कि एक गैर-रेखीय, संतृप्त प्रतिक्रिया फ़ंक्शन जोड़कर पोस्टसिनेप्टिक न्यूरॉन की फायरिंग दर को सीमित करना एक समाधान है। , लेकिन वास्तव में, यह दिखाया जा सकता है कि किसी भी न्यूरॉन मॉडल के लिए, हेब्ब का नियम अस्थिर है।[7] इसलिए, न्यूरॉन्स के नेटवर्क मॉडल आमतौर पर अन्य शिक्षण सिद्धांतों जैसे बीसीएम सिद्धांत, ओजा का नियम, को नियोजित करते हैं।[8] या सामान्यीकृत हेब्बियन एल्गोरिदम

भले ही, ऊपर दिए गए अस्थिर समाधान के लिए भी, कोई यह देख सकता है कि, जब पर्याप्त समय बीत जाता है, तो उनमें से एक शब्द दूसरों पर हावी हो जाता है, और

कहाँ का सबसे बड़ा eigenvalue है . इस समय, पोस्टसिनेप्टिक न्यूरॉन निम्नलिखित ऑपरेशन करता है:

क्योंकि, फिर से, के बीच सहसंबंध मैट्रिक्स के सबसे बड़े eigenvalue के अनुरूप eigenvector है s, यह बिल्कुल इनपुट के पहले प्रमुख घटक की गणना से मेल खाता है।

इस तंत्र को आगे पोस्टसिनेप्टिक न्यूरॉन्स को जोड़कर इनपुट का पूर्ण पीसीए (प्रमुख घटक विश्लेषण) करने के लिए बढ़ाया जा सकता है, बशर्ते कि सभी पोस्टसिनेप्टिक न्यूरॉन्स को एक ही प्रमुख घटक को लेने से रोका जाए, उदाहरण के लिए पोस्टसिनेप्टिक परत में पार्श्व अवरोध जोड़कर। इस प्रकार हमने हेब्बियन शिक्षण को पीसीए से जोड़ा है, जो कि बिना पर्यवेक्षित शिक्षण का एक प्रारंभिक रूप है, इस अर्थ में कि नेटवर्क इनपुट के उपयोगी सांख्यिकीय पहलुओं को उठा सकता है, और अपने आउटपुट में आसुत तरीके से उनका वर्णन कर सकता है।[9]


सीमाएँ

दीर्घकालिक पोटेंशिएशन के लिए हेब्बियन मॉडल के सामान्य उपयोग के बावजूद, हेब्ब का सिद्धांत सभी प्रकार के सिनैप्टिक दीर्घकालिक प्लास्टिसिटी को कवर नहीं करता है। हेब्ब ने निरोधात्मक सिनैप्स के लिए कोई नियम नहीं बनाया, न ही उन्होंने कारण-विरोधी स्पाइक अनुक्रमों (पोस्टसिनेप्टिक न्यूरॉन के बाद प्रीसिनेप्टिक न्यूरॉन आग) के लिए भविष्यवाणियां कीं। सिनैप्टिक संशोधन न केवल सक्रिय न्यूरॉन्स ए और बी के बीच हो सकता है, बल्कि पड़ोसी सिनैप्स पर भी हो सकता है।[10] इसलिए हेटेरोसिनैप्टिक प्लास्टिसिटी और होमोस्टैटिक प्लास्टिसिटी के सभी रूपों को गैर-हेब्बियन माना जाता है। एक उदाहरण प्रीसिनेप्टिक टर्मिनलों के लिए प्रतिगामी सिग्नलिंग है।[11] इस प्रतिगामी ट्रांसमीटर भूमिका को पूरा करने के लिए सबसे अधिक पहचाना जाने वाला यौगिक नाइट्रिक ऑक्साइड है, जो अपनी उच्च घुलनशीलता और प्रसारशीलता के कारण, अक्सर आस-पास के न्यूरॉन्स पर प्रभाव डालता है।[12] इस प्रकार का फैलाना सिनैप्टिक संशोधन, जिसे वॉल्यूम लर्निंग के रूप में जाना जाता है, पारंपरिक हेब्बियन मॉडल में शामिल नहीं है।[13]


दर्पण न्यूरॉन ्स का हेब्बियन लर्निंग अकाउंट

मिरर न्यूरॉन्स कैसे उभरते हैं, इसके प्रभावशाली सिद्धांत में हेब्बियन लर्निंग और स्पाइक-टाइमिंग-डिपेंडेंट प्लास्टिसिटी का उपयोग किया गया है।[14][15] मिरर न्यूरॉन्स वे न्यूरॉन्स होते हैं जो तब सक्रिय होते हैं जब कोई व्यक्ति कोई कार्य करता है और जब व्यक्ति देखता है[16] या सुनता है[17] दूसरा समान क्रिया करता है। इन न्यूरॉन्स की खोज यह समझाने में बहुत प्रभावशाली रही है कि व्यक्ति दूसरों के कार्यों को कैसे समझते हैं, यह दिखाते हुए कि, जब कोई व्यक्ति दूसरों के कार्यों को समझता है, तो व्यक्ति मोटर प्रोग्राम को सक्रिय करता है जिसका उपयोग वे समान कार्यों को करने के लिए करेंगे। इन मोटर कार्यक्रमों का सक्रियण तब धारणा में जानकारी जोड़ता है और यह अनुमान लगाने में मदद करता है कि व्यक्ति अपने स्वयं के मोटर कार्यक्रम के आधार पर आगे क्या करेगा। एक चुनौती यह समझाना है कि कैसे व्यक्तियों में न्यूरॉन्स आते हैं जो किसी कार्य को करते समय और दूसरे को समान कार्य करते हुए सुनते या देखते समय प्रतिक्रिया करते हैं।

ईसाई कुंजीर और डेविड पेरेट ने सुझाव दिया कि जैसे ही कोई व्यक्ति एक विशेष कार्य करता है, व्यक्ति उस कार्य को करते हुए देखेगा, सुनेगा और महसूस करेगा। ये पुनः अभिवाही संवेदी संकेत क्रिया की दृष्टि, ध्वनि और अनुभव पर प्रतिक्रिया करने वाले न्यूरॉन्स में गतिविधि को ट्रिगर करेंगे। क्योंकि इन संवेदी न्यूरॉन्स की गतिविधि लगातार उन मोटर न्यूरॉन्स के साथ ओवरलैप होगी जो कार्रवाई का कारण बनती है, हेब्बियन लर्निंग भविष्यवाणी करती है कि न्यूरॉन्स को जोड़ने वाले सिनैप्स किसी क्रिया की दृष्टि, ध्वनि और अनुभव पर प्रतिक्रिया करते हैं और उन न्यूरॉन्स को ट्रिगर करते हैं कार्रवाई को सशक्त बनाया जाना चाहिए. यही बात तब भी सच है जब लोग खुद को दर्पण में देखते हैं, खुद को बड़बड़ाते हुए सुनते हैं, या दूसरों की नकल करते हैं। इस पुनः-संबंध के बार-बार अनुभव के बाद, किसी क्रिया के संवेदी और मोटर प्रतिनिधित्व को जोड़ने वाले सिनैप्स इतने मजबूत होते हैं कि मोटर न्यूरॉन्स ध्वनि या क्रिया की दृष्टि पर फायरिंग करना शुरू कर देते हैं, और एक दर्पण न्यूरॉन बनाया जाता है।

उस परिप्रेक्ष्य के साक्ष्य कई प्रयोगों से मिलते हैं जो दिखाते हैं कि मोटर प्रोग्राम को मोटर प्रोग्राम के निष्पादन के साथ उत्तेजना की बार-बार जोड़ी के बाद उपन्यास श्रवण या दृश्य उत्तेजनाओं द्वारा ट्रिगर किया जा सकता है (साक्ष्य की समीक्षा के लिए, गिउडिस एट अल देखें।, 2009)[18]). उदाहरण के लिए, जिन लोगों ने कभी पियानो नहीं बजाया है, वे पियानो संगीत सुनते समय पियानो बजाने में शामिल मस्तिष्क क्षेत्रों को सक्रिय नहीं करते हैं। पांच घंटे का पियानो पाठ, जिसमें प्रतिभागी को हर बार कुंजी दबाने पर पियानो की ध्वनि के संपर्क में लाया जाता है, बाद में पियानो संगीत सुनने पर मस्तिष्क के मोटर क्षेत्रों में गतिविधि को ट्रिगर करने के लिए पर्याप्त साबित होता है।[19] इस तथ्य के अनुरूप कि स्पाइक-टाइमिंग-निर्भर प्लास्टिसिटी केवल तभी होती है जब प्रीसिनेप्टिक न्यूरॉन फायरिंग पोस्टसिनेप्टिक न्यूरॉन फायरिंग की भविष्यवाणी करती है,[20] संवेदी उत्तेजनाओं और मोटर कार्यक्रमों के बीच संबंध भी तभी प्रबल होता प्रतीत होता है जब उत्तेजना मोटर कार्यक्रम पर निर्भर हो।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Hebb, D.O. (1949). व्यवहार का संगठन. New York: Wiley & Sons.
  2. Siegrid Löwel, Göttingen University; The exact sentence is: "neurons wire together if they fire together" (Löwel, S. and Singer, W. (1992) Science 255 (published January 10, 1992) "Selection of Intrinsic Horizontal Connections in the Visual Cortex by Correlated Neuronal Activity". Science Magazine. United States: American Association for the Advancement of Science. pp. 209–212. ISSN 0036-8075.
  3. Caporale N; Dan Y (2008). "Spike timing-dependent plasticity: a Hebbian learning rule". Annual Review of Neuroscience. 31: 25–46. doi:10.1146/annurev.neuro.31.060407.125639. PMID 18275283.
  4. Allport, D.A. (1985). "Distributed memory, modular systems and dysphasia". In Newman, S.K.; Epstein R. (eds.). डिस्फेसिया में वर्तमान परिप्रेक्ष्य. Edinburgh: Churchill Livingstone. ISBN 978-0-443-03039-0.
  5. Paulsen, O; Sejnowski, T (1 April 2000). "गतिविधि के प्राकृतिक पैटर्न और दीर्घकालिक सिनैप्टिक प्लास्टिसिटी". Current Opinion in Neurobiology. 10 (2): 172–180. doi:10.1016/s0959-4388(00)00076-3.
  6. Klopf, A. H. (1972). Brain function and adaptive systems—A heterostatic theory. Technical Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA.
  7. Euliano, Neil R. (1999-12-21). "Neural and Adaptive Systems: Fundamentals Through Simulations" (PDF). Wiley. Archived from the original (PDF) on 2015-12-25. Retrieved 2016-03-16.
  8. Shouval, Harel (2005-01-03). "मस्तिष्क का भौतिकी". The Synaptic basis for Learning and Memory: A theoretical approach. The University of Texas Health Science Center at Houston. Archived from the original on 2007-06-10. Retrieved 2007-11-14.
  9. Gerstner, Wulfram; Kistler, Werner M.; Naud, Richard; Paninski, Liam (July 2014). Chapter 19: Synaptic Plasticity and Learning. ISBN 978-1107635197. Retrieved 2020-11-09. {{cite book}}: |work= ignored (help)
  10. Horgan, John (May 1994). "तंत्रिका श्रवण". Scientific American. 270 (5): 16. Bibcode:1994SciAm.270e..16H. doi:10.1038/scientificamerican0594-16. PMID 8197441.
  11. Fitzsimonds, Reiko; Mu-Ming Poo (January 1998). "सिनैप्स के विकास और संशोधन में प्रतिगामी सिग्नलिंग". Physiological Reviews. 78 (1): 143–170. doi:10.1152/physrev.1998.78.1.143. PMID 9457171. S2CID 11604896.
  12. López, P; C.P. Araujo (2009). "जैविक और कृत्रिम तंत्रिका नेटवर्क में फैले हुए पड़ोस का एक कम्प्यूटेशनल अध्ययन" (PDF). International Joint Conference on Computational Intelligence.
  13. Mitchison, G; N. Swindale (October 1999). "Can Hebbian Volume Learning Explain Discontinuities in Cortical Maps?". Neural Computation. 11 (7): 1519–1526. doi:10.1162/089976699300016115. PMID 10490935. S2CID 2325474.
  14. Keysers C; Perrett DI (2004). "Demystifying social cognition: a Hebbian perspective". Trends in Cognitive Sciences. 8 (11): 501–507. doi:10.1016/j.tics.2004.09.005. PMID 15491904. S2CID 8039741.
  15. Keysers, C. (2011). The Empathic Brain.
  16. Gallese V; Fadiga L; Fogassi L; Rizzolatti G (1996). "प्रीमोटर कॉर्टेक्स में क्रिया की पहचान". Brain. 119 (Pt 2): 593–609. doi:10.1093/brain/119.2.593. PMID 8800951.
  17. Keysers C; Kohler E; Umilta MA; Nanetti L; Fogassi L; Gallese V (2003). "दृश्य-श्रव्य दर्पण न्यूरॉन्स और क्रिया पहचान". Exp Brain Res. 153 (4): 628–636. CiteSeerX 10.1.1.387.3307. doi:10.1007/s00221-003-1603-5. PMID 12937876. S2CID 7704309.
  18. Del Giudice M; Manera V; Keysers C (2009). "Programmed to learn? The ontogeny of mirror neurons" (PDF). Dev Sci. 12 (2): 350–363. doi:10.1111/j.1467-7687.2008.00783.x. hdl:2318/133096. PMID 19143807.
  19. Lahav A; Saltzman E; Schlaug G (2007). "Action representation of sound: audiomotor recognition network while listening to newly acquired actions". J Neurosci. 27 (2): 308–314. doi:10.1523/jneurosci.4822-06.2007. PMC 6672064. PMID 17215391.
  20. Bauer EP; LeDoux JE; Nader K (2001). "पार्श्व अमिगडाला में भय कंडीशनिंग और एलटीपी समान उत्तेजना आकस्मिकताओं के प्रति संवेदनशील हैं". Nat Neurosci. 4 (7): 687–688. doi:10.1038/89465. PMID 11426221. S2CID 33130204.


अग्रिम पठन


बाहरी संबंध