पायस बहुलकीकरण

From Vigyanwiki
Revision as of 07:39, 8 June 2023 by alpha>Indicwiki (Created page with "पायसन पोलीमराइज़ेशन एक प्रकार का कट्टरपंथी पोलीमराइज़ेशन है ज...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

पायसन पोलीमराइज़ेशन एक प्रकार का कट्टरपंथी पोलीमराइज़ेशन है जो आमतौर पर पानी, मोनोमर और पृष्ठसक्रियकारक को शामिल करने वाले पायस से शुरू होता है। इमल्शन पोलीमराइज़ेशन का सबसे आम प्रकार एक ऑयल-इन-वाटर इमल्शन है, जिसमें मोनोमर (तेल) की बूंदों को पानी के एक सतत चरण में इमल्सीफाइड (सर्फेक्टेंट के साथ) किया जाता है। पानी में घुलनशील पॉलिमर, जैसे कि कुछ पॉलीविनायल अल्कोहल या हाइड्रॉक्सीएथाइल सेल्यूलोज, का उपयोग इमल्सीफायर / स्टेबलाइजर्स के रूप में कार्य करने के लिए भी किया जा सकता है। इमल्शन पोलीमराइज़ेशन नाम एक मिथ्या नाम है जो एक ऐतिहासिक ग़लतफ़हमी से उत्पन्न होता है। इमल्शन की बूंदों में होने के बजाय, पोलीमराइज़ेशन कंडोम /कोलॉइड कणों में होता है जो प्रक्रिया के पहले कुछ मिनटों में अनायास बनते हैं। ये लेटेक्स कण आमतौर पर आकार में 100 एनएम होते हैं, और कई अलग-अलग बहुलक श्रृंखलाओं से बने होते हैं। कणों को एक दूसरे के साथ जमने से रोका जाता है क्योंकि प्रत्येक कण सर्फेक्टेंट ('साबुन') से घिरा होता है; सर्फेक्टेंट पर चार्ज अन्य कणों को इलेक्ट्रोस्टैटिक रूप से पीछे हटाता है। जब पानी में घुलनशील पॉलिमर को साबुन के बजाय स्टेबलाइज़र के रूप में उपयोग किया जाता है, तो कणों के बीच प्रतिकर्षण उत्पन्न होता है क्योंकि ये पानी में घुलनशील पॉलिमर एक कण के चारों ओर एक 'बालों वाली परत' बनाते हैं जो अन्य कणों को पीछे हटाता है, क्योंकि कणों को एक साथ धकेलने से इन जंजीरों को संकुचित करना शामिल होगा।

कई व्यावसायिक रूप से महत्वपूर्ण पॉलिमर बनाने के लिए इमल्शन पोलीमराइजेशन का उपयोग किया जाता है। इनमें से कई पॉलिमर ठोस सामग्री के रूप में उपयोग किए जाते हैं और पोलीमराइजेशन के बाद जलीय फैलाव से अलग होना चाहिए। अन्य मामलों में फैलाव ही अंतिम उत्पाद है। इमल्शन पोलीमराइज़ेशन से उत्पन्न फैलाव को अक्सर लेटेक्स (विशेष रूप से यदि सिंथेटिक रबर से प्राप्त किया जाता है) या एक पायस कहा जाता है (भले ही इमल्शन सख्ती से पानी में एक अमिश्रणीय तरल के फैलाव को संदर्भित करता है)। इन इमल्शन का उपयोग गोंद , रँगना, पेपर कोटिंग और टेक्सटाइल कोटिंग में किया जाता है। इन अनुप्रयोगों में वाष्पशील कार्बनिक यौगिकों (वीओसी) की अनुपस्थिति के कारण उन्हें अक्सर विलायक-आधारित उत्पादों से अधिक पसंद किया जाता है।

IUPAC definition

Emulsion polymerization: Polymerization whereby monomer(s), initiator, dispersion
medium, and possibly colloid stabilizer constitute initially an inhomogeneous system
resulting in particles of colloidal dimensions containing the formed polymer.

Note: With the exception of mini-emulsion polymerization, the term “emulsion polymerization”
does not mean that polymerization occurs in the droplets of a monomer emulsion.[1]

Batch emulsion polymerization: Emulsion polymerization in which all the ingredients are
placed in a reactor prior to reaction.[2]

पायस पोलीमराइज़ेशन के लाभों में शामिल हैं:[3]

  • उच्च आणविक भार पॉलिमर को तेजी से पोलीमराइजेशन दरों पर बनाया जा सकता है। इसके विपरीत, बल्क और सॉल्यूशन फ्री-रेडिकल पोलीमराइज़ेशन में, आणविक भार और पोलीमराइज़ेशन दर के बीच एक व्यापार होता है।
  • निरंतर जल चरण ऊष्मा का एक उत्कृष्ट ऊष्मा चालन है, जिससे तापमान नियंत्रण के नुकसान के बिना तेजी से पोलीमराइजेशन दर को सक्षम किया जा सकता है।
  • चूंकि बहुलक अणु कणों के भीतर समाहित होते हैं, प्रतिक्रिया माध्यम की चिपचिपाहट पानी के करीब रहती है और आणविक भार पर निर्भर नहीं होती है।
  • अंतिम उत्पाद का उपयोग जैसा है वैसा ही किया जा सकता है और आमतौर पर इसे बदलने या संसाधित करने की आवश्यकता नहीं होती है।

पायस पोलीमराइजेशन के नुकसान में शामिल हैं:

  • सर्फैक्टेंट्स और अन्य पोलीमराइज़ेशन गुणवर्धक औषधि पॉलिमर में बने रहते हैं या उन्हें निकालना मुश्किल होता है
  • शुष्क (पृथक) पॉलिमर के लिए, पानी निकालना एक ऊर्जा-गहन प्रक्रिया है
  • इमल्शन पोलीमराइज़ेशन आमतौर पर मोनोमर के पॉलीमर में उच्च रूपांतरण पर संचालित करने के लिए डिज़ाइन किए जाते हैं। इसके परिणामस्वरूप पॉलिमर में महत्वपूर्ण चेन ट्रांसफर हो सकता है।
  • संक्षेपण, आयनिक, या ज़िगलर-नट्टा पोलीमराइज़ेशन के लिए उपयोग नहीं किया जा सकता है, हालांकि कुछ अपवाद ज्ञात हैं।

इतिहास

पायस पोलीमराइज़ेशन का प्रारंभिक इतिहास सिंथेटिक रबर के क्षेत्र से जुड़ा हुआ है।[4][5] सिंथेटिक रबर तैयार करने के प्रयास में, प्रथम विश्व युद्ध से पहले, एक जलीय निलंबन या पायस में एक इमल्सीफाइड मोनोमर का उपयोग करने का विचार पहली बार बायर में माना गया था।[6][7] इस विकास के लिए प्रेरणा यह अवलोकन था कि कोलाइडल पॉलिमर द्वारा स्थिर किए गए बिखरे हुए कणों में कमरे के तापमान पर प्राकृतिक रबर का उत्पादन होता है, इसलिए औद्योगिक रसायनज्ञों ने इन स्थितियों की नकल करने की कोशिश की। बायर श्रमिकों ने अपने फैलाव को स्थिर करने के लिए स्वाभाविक रूप से होने वाले पॉलिमर जैसे जेलाटीन , ओवलब्यूमिन और स्टार्च का इस्तेमाल किया। आज की परिभाषा के अनुसार ये सच्चे इमल्शन पोलीमराइज़ेशन नहीं थे, लेकिन निलंबन पोलीमराइज़ेशन थे।

पहला सच्चा इमल्शन पोलीमराइज़ेशन, जिसमें एक सर्फेक्टेंट और पोलीमराइज़ेशन इनिशिएटर का इस्तेमाल किया गया था, 1920 के दशक में आइसोप्रेन को पोलीमराइज़ करने के लिए आयोजित किया गया था।[8][9] अगले बीस वर्षों में, द्वितीय विश्व युद्ध के अंत तक, इमल्शन पोलीमराइज़ेशन द्वारा सिंथेटिक रबर के कई रूपों के उत्पादन के लिए कुशल तरीके विकसित किए गए, लेकिन वैज्ञानिक साहित्य में अपेक्षाकृत कुछ प्रकाशन सामने आए: अधिकांश खुलासे पेटेंट तक ही सीमित थे या गुप्त रखे गए थे। युद्धकालीन जरूरतों के कारण।

द्वितीय विश्व युद्ध के बाद, प्लास्टिक के उत्पादन के लिए इमल्शन पोलीमराइज़ेशन का विस्तार किया गया। पेंट और तरल फैलाव के रूप में बेचे जाने वाले अन्य उत्पादों में उपयोग किए जाने वाले फैलाव का निर्माण शुरू हुआ। विलायक -आधारित सामग्रियों को प्रतिस्थापित करने वाले उत्पादों को तैयार करने के लिए पहले से कहीं अधिक परिष्कृत प्रक्रियाएं तैयार की गईं। विडंबना यह है कि सिंथेटिक रबर निर्माण इमल्शन पोलीमराइजेशन से अधिक से अधिक दूर हो गया क्योंकि नए organometallic उत्प्रेरक विकसित किए गए थे जो पॉलिमर आर्किटेक्चर के बेहतर नियंत्रण की अनुमति देते थे।

सैद्धांतिक सिंहावलोकन

इमल्शन पोलीमराइज़ेशन की विशिष्ट विशेषताओं की व्याख्या करने वाला पहला सफल सिद्धांत स्मिथ और इवर्ट द्वारा विकसित किया गया था,[10] और हरकिंस[11] 1940 के दशक में, POLYSTYRENE के उनके अध्ययन के आधार पर। स्मिथ और इवर्ट ने इमल्शन पोलीमराइजेशन के तंत्र को मनमाने ढंग से तीन चरणों या अंतरालों में विभाजित किया। इसके बाद, यह माना गया कि सभी मोनोमर्स या सिस्टम इन विशेष तीन अंतरालों से नहीं गुजरते हैं। फिर भी, स्मिथ-इवर्ट विवरण इमल्शन पोलीमराइज़ेशन का विश्लेषण करने के लिए एक उपयोगी प्रारंभिक बिंदु है।

पायस पोलीमराइजेशन की योजनाबद्ध

फ्री-रेडिकल इमल्शन पोलीमराइज़ेशन के तंत्र के लिए स्मिथ-एवर्ट-हार्किंस सिद्धांत को निम्नलिखित चरणों द्वारा संक्षेपित किया गया है:

  • एक मोनोमर सर्फेक्टेंट और पानी के घोल में फैलाया या उत्सर्जित किया जाता है, जिससे पानी में अपेक्षाकृत बड़ी बूंदें बन जाती हैं।
  • अतिरिक्त सर्फेक्टेंट पानी में मिसेल बनाता है।
  • मोनोमर की छोटी मात्रा पानी के माध्यम से मिसेल में फैलती है।
  • एक पानी में घुलनशील प्रारंभकर्ता को पानी के चरण में पेश किया जाता है जहां यह मिसेलस में मोनोमर के साथ प्रतिक्रिया करता है। (यह विशेषता निलंबन पोलीमराइज़ेशन से भिन्न होती है जहाँ एक तेल में घुलनशील आरंभकर्ता मोनोमर में घुल जाता है, इसके बाद मोनोमर बूंदों में बहुलक का निर्माण होता है।) इसे स्मिथ-इवर्ट अंतराल 1 माना जाता है।
  • मिसेल का कुल सतह क्षेत्र कम, बड़ी मोनोमर बूंदों के कुल सतह क्षेत्र से बहुत अधिक है; इसलिए सर्जक आमतौर पर मिसेल में प्रतिक्रिया करता है न कि मोनोमर ड्रॉपलेट में।
  • मिसेल में मोनोमर जल्दी से पोलीमराइज़ हो जाता है और बढ़ती श्रृंखला समाप्त हो जाती है। इस बिंदु पर मोनोमर-सूजे हुए मिसेल एक बहुलक कण में बदल गए हैं। जब सिस्टम में मोनोमर ड्रॉपलेट्स और पॉलिमर कण दोनों मौजूद होते हैं, तो इसे स्मिथ-इवर्ट इंटरवल 2 माना जाता है।
  • बूंदों से अधिक मोनोमर बढ़ते कण में फैल जाता है, जहां अधिक आरंभकर्ता अंततः प्रतिक्रिया करेंगे।
  • आखिरकार मुक्त मोनोमर बूंदें गायब हो जाती हैं और शेष सभी मोनोमर कणों में स्थित हो जाते हैं। इसे स्मिथ-इवर्ट अंतराल 3 माना जाता है।
  • विशेष उत्पाद और मोनोमर के आधार पर, अतिरिक्त मोनोमर और इनिशिएटर को लगातार और धीरे-धीरे जोड़ा जा सकता है ताकि कणों के बढ़ने पर सिस्टम में उनके स्तर को बनाए रखा जा सके।
  • अंतिम उत्पाद पानी में बहुलक कणों का फैलाव (सामग्री विज्ञान) है। इसे पॉलिमर कोलाइड, लेटेक्स, या आमतौर पर और गलत तरीके से 'इमल्शन' के रूप में भी जाना जा सकता है।

स्मिथ-इवर्ट सिद्धांत विशिष्ट पोलीमराइज़ेशन व्यवहार की भविष्यवाणी नहीं करता है जब मोनोमर कुछ हद तक पानी में घुलनशील होता है, जैसे मिथाइल मेथाक्रायलेट या विनयल असेटेट । इन मामलों में सजातीय न्यूक्लियेशन होता है: कण उपस्थिति के बिना बनते हैं या सर्फेक्टेंट मिसेल की आवश्यकता होती है।[12] इमल्शन पोलीमराइज़ेशन में उच्च आणविक भार विकसित होते हैं क्योंकि प्रत्येक पॉलीमर कण के भीतर बढ़ती श्रृंखलाओं की सांद्रता बहुत कम होती है। पारंपरिक कट्टरपंथी पोलीमराइज़ेशन में, बढ़ती श्रृंखलाओं की सांद्रता अधिक होती है, जो युग्मन द्वारा श्रृंखला समाप्ति की ओर ले जाती है, जिसके परिणामस्वरूप अंततः छोटी बहुलक श्रृंखलाएँ होती हैं। मूल स्मिथ-इवर्ट-हॉकिन्स तंत्र के लिए आवश्यक था कि प्रत्येक कण में या तो शून्य या एक बढ़ती हुई श्रृंखला हो। इमल्शन पोलीमराइजेशन की बेहतर समझ ने उस कसौटी को शिथिल कर दिया है जिसमें प्रति कण एक से अधिक बढ़ती श्रृंखला शामिल है, हालांकि, प्रति कण बढ़ती श्रृंखलाओं की संख्या अभी भी बहुत कम मानी जाती है।

पायस पोलीमराइज़ेशन के दौरान होने वाले जटिल रसायन विज्ञान के कारण, पोलीमराइज़ेशन रासायनिक गतिकी और पार्टिकल फॉर्मेशन कैनेटीक्स सहित, इमल्शन पोलीमराइज़ेशन के तंत्र की मात्रात्मक समझ के लिए व्यापक कंप्यूटर सिमुलेशन की आवश्यकता होती है। रॉबर्ट गिल्बर्ट (केमिस्ट)रसायनज्ञ) ने एक हालिया सिद्धांत का सारांश दिया है।[13]


स्मिथ-इवर्ट सिद्धांत का अधिक विस्तृत विवेचन

अंतराल 1

जब जलीय चरण में उत्पन्न कट्टरपंथी मिसेल के भीतर मोनोमर का सामना करते हैं, तो वे पोलीमराइजेशन शुरू करते हैं। मिसेल के भीतर मोनोमर का बहुलक में रूपांतरण मोनोमर एकाग्रता को कम करता है और एक मोनोमर एकाग्रता ढाल उत्पन्न करता है। नतीजतन, मोनोमर बूंदों और बिन बुलाए मिसेल से मोनोमर बढ़ते, बहुलक युक्त, कणों में फैलना शुरू हो जाता है। रूपांतरण के पहले चरण के दौरान एक कट्टरपंथी का सामना नहीं करने वाले मिसेल गायब होने लगते हैं, बढ़ते कणों के लिए अपने मोनोमर और सर्फेक्टेंट को खो देते हैं। सिद्धांत भविष्यवाणी करता है कि इस अंतराल के अंत के बाद, बढ़ते बहुलक कणों की संख्या स्थिर रहती है।

अंतराल 2

इस अंतराल को स्थिर अवस्था प्रतिक्रिया चरण के रूप में भी जाना जाता है। इस चरण के दौरान, मोनोमर की बूंदें जलाशयों के रूप में कार्य करती हैं जो पानी के माध्यम से प्रसार द्वारा बढ़ते बहुलक कणों को मोनोमर की आपूर्ति करती हैं। जबकि स्थिर अवस्था में, प्रति कण मुक्त कणों के अनुपात को तीन मामलों में विभाजित किया जा सकता है। जब प्रति कण मुक्त कणों की संख्या से कम हो 12, इसे केस 1 कहा जाता है। जब प्रति कण मुक्त कणों की संख्या बराबर होती है 12, इसे केस 2 कहा जाता है। और जब से अधिक होता है 12 रैडिकल प्रति कण, इसे केस 3 कहा जाता है। स्मिथ-एवर्ट सिद्धांत भविष्यवाणी करता है कि केस 2 निम्नलिखित कारणों से प्रमुख परिदृश्य है। एक मोनोमर-सूजे हुए कण जो एक कट्टरपंथी द्वारा मारा गया है, में एक बढ़ती हुई श्रृंखला होती है। क्योंकि केवल एक मूलक (बढ़ती बहुलक श्रृंखला के अंत में) मौजूद है, श्रृंखला समाप्त नहीं हो सकती है, और यह तब तक बढ़ता रहेगा जब तक कि दूसरा आरंभकर्ता मूलक कण में प्रवेश नहीं करता। चूंकि समाप्ति की दर प्रसार की दर से बहुत अधिक है, और क्योंकि बहुलक कण बहुत छोटे हैं, दूसरे सर्जक कट्टरपंथी के प्रवेश के तुरंत बाद श्रृंखला वृद्धि समाप्त हो जाती है। कण तब तक निष्क्रिय रहता है जब तक कि एक तीसरी सर्जक कट्टरपंथी प्रवेश नहीं करता है, दूसरी श्रृंखला के विकास की शुरुआत करता है। नतीजतन, इस मामले में बहुलक कणों में या तो शून्य रेडिकल (निष्क्रिय अवस्था), या 1 रेडिकल (पॉलिमर ग्रोइंग स्टेट) और 2 रेडिकल्स (टर्मिनेटिंग स्टेट) की बहुत कम अवधि होती है, जिसे फ्री रेडिकल्स प्रति कण गणना के लिए अनदेखा किया जा सकता है। किसी भी समय, एक मिसेल में या तो एक बढ़ती हुई श्रृंखला होती है या कोई बढ़ती श्रृंखला नहीं होती है (समान रूप से संभावित माना जाता है)। इस प्रकार, औसतन, प्रति कण लगभग 1/2 रेडिकल होता है, जो केस 2 परिदृश्य की ओर ले जाता है। इस चरण में पोलीमराइज़ेशन दर द्वारा व्यक्त किया जा सकता है

कहाँ कणों के भीतर पोलीमराइजेशन के लिए सजातीय प्रसार दर स्थिर है और एक कण के भीतर संतुलन मोनोमर एकाग्रता है। प्रतिक्रिया में पोलीमराइजिंग रेडिकल्स की समग्र एकाग्रता का प्रतिनिधित्व करता है। केस 2 के लिए, जहां प्रति मिसेल फ्री रेडिकल्स की औसत संख्या है , निम्नलिखित अभिव्यक्ति में गणना की जा सकती है:

कहाँ मिसेलस की संख्या एकाग्रता है (प्रति इकाई मात्रा में मिसेल की संख्या), और अवोगाद्रो स्थिरांक है (6.02×1023 mol−1). नतीजतन, पोलीमराइजेशन की दर तब है


अंतराल 3

प्रतिक्रिया जारी रहने पर अलग-अलग मोनोमर बूंदें गायब हो जाती हैं। इस चरण में पॉलिमर के कण इतने बड़े हो सकते हैं कि उनमें प्रति कण 1 से अधिक रेडिकल हो।

प्रक्रिया विचार

इमल्शन पोलीमराइजेशन का उपयोग बैच उत्पादन, अर्ध-बैच और निरंतर उत्पादन प्रक्रियाओं में किया गया है। पसंद अंतिम बहुलक या फैलाव और उत्पाद के अर्थशास्त्र में वांछित गुणों पर निर्भर करता है। आधुनिक प्रक्रिया नियंत्रण योजनाओं ने जटिल प्रतिक्रिया प्रक्रियाओं के विकास को सक्षम किया है, जिसमें प्रारंभकर्ता, मोनोमर और सर्फेक्टेंट जैसे अवयवों को शुरुआत में, प्रतिक्रिया के दौरान या अंत में जोड़ा गया है।

प्रारंभिक स्टाइरीन-ब्यूटाडाइन रबर (SBR) व्यंजन वास्तविक बैच प्रक्रियाओं के उदाहरण हैं: रिएक्टर में एक ही समय में जोड़े गए सभी अवयव। अर्ध-बैच व्यंजनों में आमतौर पर रिएक्टर को मोनोमर का प्रोग्राम किया हुआ फीड शामिल होता है। यह बहुलक रीढ़ की हड्डी श्रृंखला में मोनोमर्स का अच्छा वितरण सुनिश्चित करने के लिए भूखे-खिलाए गए प्रतिक्रिया को सक्षम बनाता है। सिंथेटिक रबर के विभिन्न ग्रेड के निर्माण के लिए निरंतर प्रक्रियाओं का उपयोग किया गया है।

सभी मोनोमर के प्रतिक्रिया करने से पहले कुछ पोलीमराइज़ेशन रोक दिए जाते हैं। यह पॉलिमर में चेन ट्रांसफर को कम करता है। ऐसे मामलों में फैलाव से मोनोमर को हटाया जाना चाहिए या स्ट्रिपिंग (रसायन विज्ञान) किया जाना चाहिए।

कोलाइडल स्थिरता एक पायस पोलीमराइज़ेशन प्रक्रिया के डिजाइन का एक कारक है। सूखे या पृथक उत्पादों के लिए, बहुलक फैलाव को पृथक किया जाना चाहिए, या ठोस रूप में परिवर्तित किया जाना चाहिए। यह फैलाव के साधारण ताप द्वारा पूरा किया जा सकता है जब तक कि सारा पानी वाष्पित न हो जाए। अधिक सामान्यतः, फैलाव अस्थिर होता है (कभी-कभी टूटा हुआ कहा जाता है) एक बहुसंयोजक कटियन के अतिरिक्त। वैकल्पिक रूप से, अम्लीकरण कार्बोज़ाइलिक तेजाब सर्फेक्टेंट के साथ फैलाव को अस्थिर कर देगा। अस्थिरता की दर को बढ़ाने के लिए इन तकनीकों को शियरिंग (भौतिकी) के अनुप्रयोग के संयोजन में नियोजित किया जा सकता है। बहुलक के अलगाव के बाद, इसे आमतौर पर धोया जाता है, सुखाया जाता है और पैक किया जाता है।

इसके विपरीत, फैलाव के रूप में बेचे जाने वाले उत्पादों को कोलाइडल स्थिरता के उच्च स्तर के साथ डिज़ाइन किया गया है। इन फैलावों के प्रदर्शन के लिए कण आकार, कण आकार वितरण और चिपचिपाहट जैसे कोलाइडयन गुण महत्वपूर्ण हैं।

आयोडीन-ट्रांसफर पोलीमराइज़ेशन और RAFT (रसायन विज्ञान) जैसे इमल्शन पोलीमराइज़ेशन के माध्यम से की जाने वाली जीवित पोलीमराइज़ेशन प्रक्रियाएँ विकसित की गई हैं।

नियंत्रित जमावट तकनीक कण आकार और वितरण के बेहतर नियंत्रण को सक्षम कर सकती है।[14]


अवयव

मोनोमर्स

विशिष्ट मोनोमर्स वे हैं जो कट्टरपंथी पोलीमराइज़ेशन से गुजरते हैं, प्रतिक्रिया की स्थिति में तरल या गैसीय होते हैं, और पानी में खराब घुलनशील होते हैं। ठोस मोनोमर्स को पानी में फैलाना मुश्किल होता है। यदि मोनोमर घुलनशीलता बहुत अधिक है, तो कण गठन नहीं हो सकता है और प्रतिक्रिया कैनेटीक्स समाधान पोलीमराइजेशन के रूप में कम हो जाती है।

ईथेन और अन्य साधारण ओलेफिन को बहुत अधिक दबाव (800 बार तक) पर पोलीमराइज़ किया जाना चाहिए।

कॉमोनोमर्स

इमल्शन पोलीमराइज़ेशन में कोपॉलीमराइज़ेशन आम है। रेडिकल पोलीमराइज़ेशन में मौजूद समान नियम और कॉमोनोमर जोड़े इमल्शन पोलीमराइज़ेशन में काम करते हैं। हालांकि, मोनोमर्स की जलीय घुलनशीलता से सहबहुलीकरण कैनेटीक्स बहुत प्रभावित होते हैं। अधिक जलीय घुलनशीलता वाले मोनोमर्स जलीय चरण में तरल-तरल निष्कर्षण की ओर प्रवृत्त होंगे न कि बहुलक कण में। वे कम जलीय घुलनशीलता वाले मोनोमर्स के रूप में बहुलक श्रृंखला में आसानी से शामिल नहीं होंगे। सेमी-बैच प्रक्रिया का उपयोग करके मोनोमर के क्रमादेशित जोड़ से इससे बचा जा सकता है।

इथेन और अन्य अल्केन्स का उपयोग इमल्शन पोलीमराइज़ेशन में मामूली कॉमोनोमर्स के रूप में किया जाता है, विशेष रूप से विनाइल एसीटेट कॉपोलिमर में।

कभी-कभी एक फैलाव को कोलाइडल स्थिरता प्रदान करने के लिए एक्रिलिक एसिड या अन्य आयनीकरणीय मोनोमर्स की छोटी मात्रा का उपयोग किया जाता है।

पहल करने वाले

इमल्शन पोलीमराइज़ेशन में फ्री रेडिकल्स की गर्मी और रिडॉक्स पीढ़ी दोनों का उपयोग किया गया है। Persulfate लवण आमतौर पर दोनों दीक्षा (रसायन विज्ञान) मोड में उपयोग किया जाता है। पर्सल्फ़ेट आयन लगभग 50 डिग्री सेल्सियस से ऊपर सल्फेट रेडिकल आयनों में आसानी से टूट जाता है, जिससे दीक्षा का एक थर्मल स्रोत मिलता है। रेडॉक्स दीक्षा तब होती है जब एक ऑक्सीडेंट जैसे कि परसल्फेट नमक, एक कम करने वाला एजेंट जैसे ग्लूकोज, रंगलाइट, या सल्फाइट, और एक रेडॉक्स उत्प्रेरक जैसे कि लोहे का यौगिक सभी पोलीमराइजेशन रेसिपी में शामिल होते हैं। रेडॉक्स रेसिपी तापमान से सीमित नहीं हैं और 50 डिग्री सेल्सियस से नीचे होने वाले पोलीमराइज़ेशन के लिए उपयोग की जाती हैं।

हालांकि कार्बनिक पेरोक्साइड और हाइड्रोपरॉक्साइड्स का उपयोग इमल्शन पोलीमराइजेशन में किया जाता है, आरंभकर्ता आमतौर पर पानी के चरण में पानी में घुलनशील और तरल-तरल निष्कर्षण होते हैं। यह सिद्धांत खंड में वर्णित कण पीढ़ी के व्यवहार को सक्षम बनाता है। रेडॉक्स दीक्षा में, या तो ऑक्सीडेंट या कम करने वाला एजेंट (या दोनों) पानी में घुलनशील होना चाहिए, लेकिन एक घटक पानी में अघुलनशील हो सकता है।

सर्फैक्टेंट्स

किसी भी इमल्शन पोलीमराइजेशन प्रक्रिया के विकास के लिए सही सर्फेक्टेंट का चयन महत्वपूर्ण है। सर्फेक्टेंट को पोलीमराइजेशन की तेज दर को सक्षम करना चाहिए, रिएक्टर और अन्य प्रक्रिया उपकरणों में थक्का या अवरोधन को कम करना चाहिए, पोलीमराइजेशन के दौरान अस्वीकार्य रूप से उच्च चिपचिपाहट को रोकना चाहिए (जिससे खराब गर्मी हस्तांतरण होता है), और अंतिम उत्पाद में गुणों को बनाए रखना या यहां तक ​​कि सुधार करना तन्य शक्ति, चमक (भौतिक उपस्थिति), और जल अवशोषण।

आयनिक, नॉनऑनिक और धनायनित सर्फेक्टेंट का उपयोग किया गया है, हालांकि ऋणात्मक सर्फेक्टेंट अब तक सबसे अधिक प्रचलित हैं। कम महत्वपूर्ण मिसेल एकाग्रता (CMC) वाले सर्फेक्टेंट को प्राथमिकता दी जाती है; जब सर्फेक्टेंट का स्तर सीएमसी से ऊपर होता है, तो पोलीमराइज़ेशन दर में नाटकीय वृद्धि दिखाई देती है, और आर्थिक कारणों से सर्फैक्टेंट के न्यूनतमकरण को प्राथमिकता दी जाती है और परिणामी पॉलीमर के भौतिक गुणों पर (आमतौर पर) सर्फैक्टेंट का प्रतिकूल प्रभाव पड़ता है। सर्फेक्टेंट के मिश्रण का अक्सर उपयोग किया जाता है, जिसमें नॉनऑनिक सर्फैक्टेंट के साथ एनीओनिक के मिश्रण शामिल हैं। Cationic और anionic पृष्ठसक्रियकारकों के मिश्रण अघुलनशील लवण बनाते हैं और उपयोगी नहीं होते हैं।

इमल्शन पोलीमराइज़ेशन में आमतौर पर उपयोग किए जाने वाले सर्फेक्टेंट के उदाहरणों में वसायुक्त अम्ल, सोडियम लॉरिल सल्फ़ेट और अल्फा-ओलेफिन सल्फोनेट शामिल हैं।

गैर-सर्फेक्टेंट स्टेबलाइजर्स

पॉलीविनाइल अल्कोहल और अन्य पानी में घुलनशील पॉलिमर के कुछ ग्रेड इमल्शन पोलीमराइजेशन को बढ़ावा दे सकते हैं, भले ही वे आम तौर पर मिसेल नहीं बनाते हैं और सर्फेक्टेंट के रूप में कार्य नहीं करते हैं (उदाहरण के लिए, वे सतह के तनाव को कम नहीं करते हैं)। ऐसा माना जाता है कि इन जल-घुलनशील पॉलिमरों पर बढ़ती बहुलक श्रृंखलाएं ग्राफ्ट होती हैं, जो परिणामी कणों को स्थिर करती हैं।[15] इस तरह के स्टेबलाइजर्स के साथ तैयार किए गए फैलाव आमतौर पर उत्कृष्ट कोलाइडल स्थिरता प्रदर्शित करते हैं (उदाहरण के लिए, सूखे पाउडर को जमावट पैदा किए बिना फैलाव में मिलाया जा सकता है)। हालांकि, वे अक्सर ऐसे उत्पादों में परिणत होते हैं जो पानी में घुलनशील बहुलक की उपस्थिति के कारण बहुत पानी के प्रति संवेदनशील होते हैं।

अन्य सामग्री

इमल्शन पोलीमराइजेशन में पाए जाने वाले अन्य अवयवों में चेन ट्रांसफर, बफरिंग एजेंट और अक्रिय लवण शामिल हैं। बैक्टीरिया के विकास को धीमा करने के लिए तरल फैलाव के रूप में बेचे जाने वाले उत्पादों में संरक्षक जोड़े जाते हैं। हालाँकि, इन्हें आमतौर पर पोलीमराइज़ेशन के बाद जोड़ा जाता है।

अनुप्रयोग

इमल्शन पोलीमराइजेशन द्वारा उत्पादित पॉलिमर को मोटे तौर पर तीन श्रेणियों में विभाजित किया जा सकता है।

यह भी देखें

संदर्भ

  1. Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011). "Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" (PDF). Pure and Applied Chemistry. 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03. S2CID 96812603.
  2. Slomkowski, Stanislaw; Alemán, José V.; Gilbert, Robert G.; Hess, Michael; Horie, Kazuyuki; Jones, Richard G.; Kubisa, Przemyslaw; Meisel, Ingrid; Mormann, Werner; Penczek, Stanisław; Stepto, Robert F. T. (2011). "Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011)" (PDF). Pure and Applied Chemistry. 83 (12): 2229–2259. doi:10.1351/PAC-REC-10-06-03. S2CID 96812603.
  3. Odian, G, Principles of Polymerization, Wiley, New York
  4. Whitby, G. S.; Katz, M. (1933). "सिंथेटिक रबर". Industrial & Engineering Chemistry. 25 (12): 1338–1348. doi:10.1021/ie50288a012.
  5. Hohenstein, W. P.; Mark, H. (1946). "निलंबन और पायस में ओलेफ़िन और डाइओलेफ़िन का पोलीमराइज़ेशन। भाग I". Journal of Polymer Science. 1 (2): 127–145. Bibcode:1946JPoSc...1..127H. doi:10.1002/pol.1946.120010207.
  6. German patent 250690 (September 12, 1909)
  7. Gottlob, Kurt. "Caoutchouc substance and process of making same" U.S. Patent 1,149,577, filed January 6, 1913.
  8. German patent 558890 (filed January 8, 1927)
  9. Dinsmore, Ray P. "Synthetic rubber and method of making it" U.S. Patent 1,732,795, filed September 13, 1927.
  10. Smith, Wendell V.; Ewart, Roswell H. (1948). "इमल्शन पोलीमराइजेशन के कैनेटीक्स". The Journal of Chemical Physics. 16 (6): 592–599. Bibcode:1948JChPh..16..592S. doi:10.1063/1.1746951.
  11. Harkins, William D. (1947). "इमल्शन पोलीमराइज़ेशन की क्रियाविधि का एक सामान्य सिद्धांत1". Journal of the American Chemical Society. 69 (6): 1428–1444. doi:10.1021/ja01198a053. PMID 20249728.
  12. Fitch, R. M. (1971) Polymer Colloids, Plenum, NY.
  13. Gilbert, R. G. (1996) Emulsion Polymerization: a Mechanistic Approach. Academic Press, London.
  14. Kostansek, Edward (2004-01-01). "इमल्शन पॉलिमर का नियंत्रित जमाव". JCT Research (in English). 1 (1): 41–44. doi:10.1007/s11998-004-0023-1. ISSN 1935-3804.
  15. Kim, Noma; Sudol, E. David; Dimonie, Victoria L.; El-Aasser, Mohamed S. (2004). "पानी में घुलनशील, आंशिक रूप से पानी में घुलनशील, और तेल में घुलनशील आरंभकर्ताओं का उपयोग करके ऑन-ब्यूटाइल एक्रिलेट और मिथाइल मेथैक्रिलेट के मिनिइमल्शन कोपोलिमराइजेशन में पीवीए का ग्राफ्टिंग". Macromolecules. 37 (9): 3180–3187. doi:10.1021/ma035153w.