पॉलीसिलिकॉन रिक्तीकरण प्रभाव

From Vigyanwiki
Revision as of 11:54, 20 June 2023 by alpha>Indicwiki (Created page with "{{EngvarB|date = March 2019}} {{Short description|Variation of threshold voltage in polycrystalline silicon materials}} पॉलीसिलिकॉन रिक्त...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

पॉलीसिलिकॉन रिक्तीकरण प्रभाव वह घटना है जिसमें गेट सामग्री के रूप में पॉलीसिलिकॉन का उपयोग करने वाले MOSFET उपकरणों के सीमा वोल्टेज में अवांछित परिवर्तन देखा जाता है, जिससे विद्युत सर्किट का अप्रत्याशित व्यवहार होता है।[1] इस भिन्नता के कारण समस्या को हल करने के लिए हाई-κ डाइलेक्ट्रिक | हाई-के डाइलेक्ट्रिक मेटल गेट्स (एचकेएमजी) पेश किए गए थे।

पॉलीक्रिस्टलाइन सिलिकॉन, जिसे पॉलीसिलिकॉन भी कहा जाता है, एक सामग्री है जिसमें छोटे सिलिकॉन क्रिस्टल होते हैं। उत्तरार्द्ध सेमीकंडक्टर डिवाइस और सौर कोशिकाओं के लिए उपयोग किए जाने वाले क्रिस्टलीय सिलिकॉन से और पतली फिल्म उपकरणों और सौर कोशिकाओं के लिए उपयोग किए जाने वाले अनाकार सिलिकॉन से भिन्न होता है।

गेट सामग्री पसंद

गेट संपर्क पॉलीसिलिकॉन या धातु का हो सकता है, पहले पॉलीसिलिकॉन को धातु के ऊपर चुना गया था क्योंकि पॉलीसिलिकॉन और गेट ऑक्साइड (सिलिकॉन डाइऑक्साइड | SiO2) के बीच का अंतर2) अनुकूल था। लेकिन पॉली-सिलिकॉन परत की चालकता बहुत कम है और इस कम चालकता के कारण, आवेश संचय कम होता है, जिससे चैनल निर्माण में देरी होती है और इस प्रकार सर्किट में अवांछित देरी होती है। पॉली लेयर को एन-टाइप या पी-टाइप अशुद्धता से डोप किया जाता है ताकि यह एक आदर्श कंडक्टर की तरह व्यवहार करे और देरी को कम करे।

डोप्ड पॉलीसिलिकॉन गेट के नुकसान

चित्रा 1 (ए)

मेंgs= गेट वोल्टेज

वीth= दहलीज वोल्टेज
n+ = अत्यधिक डोप्ड N क्षेत्र

एनएमओएस तर्क ट्रांजिस्टर के चित्र 1(ए) में यह देखा गया है कि बाहरी विद्युत क्षेत्र की अनुपस्थिति के कारण मुक्त बहुमत वाहक पूरे ढांचे में बिखरे हुए हैं। जब गेट पर एक सकारात्मक क्षेत्र लगाया जाता है, तो बिखरे हुए वाहक खुद को चित्र 1 (बी) की तरह व्यवस्थित करते हैं, इलेक्ट्रॉन गेट टर्मिनल की ओर बढ़ते हैं लेकिन खुले सर्किट कॉन्फ़िगरेशन के कारण वे बहना शुरू नहीं करते हैं। आवेशों के पृथक्करण के परिणामस्वरूप पॉलीसिलिकॉन-ऑक्साइड इंटरफ़ेस पर एक कमी क्षेत्र बनता है, जिसका MOSFETs में चैनल निर्माण पर सीधा प्रभाव पड़ता है।[2]

चित्रा 1 (बी)

N+ पॉलीसिलिकॉन गेट वाले NMOS में, दाता आयनों (N) के (+) ve क्षेत्र के संयुक्त प्रभाव से चैनल निर्माण में पॉली डिप्लेशन प्रभाव सहायता करता है।D) और गेट टर्मिनल पर बाहरी रूप से लागू (+) ve फ़ील्ड। मूल रूप से (+) ve आवेशित दाता आयनों (ND) पॉलीसिलिकॉन पर उलटा चैनल के गठन को बढ़ाता है और कबVgs > Vth एक व्युत्क्रम परत बनती है, जिसे आकृति 1(b) में देखा जा सकता है, जहां प्रतिलोम चैनल स्वीकर्ता आयनों (N) से बनता हैA) (अल्पसंख्यक वाहक)।[3] पॉलीसिलिकॉन की कमी निर्माण प्रक्रिया के आधार पर एक ट्रांजिस्टर में पार्श्व रूप से भिन्न हो सकती है, जिससे कुछ ट्रांजिस्टर आयामों में महत्वपूर्ण ट्रांजिस्टर परिवर्तनशीलता हो सकती है।[4]


मेटल गेट्स को फिर से पेश किया गया

उपरोक्त कारणों से जैसे-जैसे डिवाइस 32nm स्केलिंग पर नीचे जाते हैं | (32-28nm नोड्स) पॉली गेट्स को मेटल गेट्स द्वारा प्रतिस्थापित किया जा रहा है। निम्न तकनीक को High-κ डाइइलेक्ट्रिक|हाई-k डाइइलेक्ट्रिक मेटल गेट (HKMG) इंटीग्रेशन के रूप में जाना जाता है।[5][6] 2011 में इंटेल ने विभिन्न नोड्स की अपनी निर्माण प्रक्रियाओं के बारे में एक प्रेस-किट जारी की है, जिसमें मेटल गेट प्रौद्योगिकी का उपयोग दिखाया गया है।[7] डोप्ड पॉलीसिलिकॉन को पहले MOS उपकरणों में गेट सामग्री के रूप में पसंद किया जाता था। पॉलीसिलिकॉन का उपयोग उनके समारोह का कार्य के रूप में सी सब्सट्रेट (जिसके परिणामस्वरूप MOSFET के कम थ्रेशोल्ड वोल्टेज में होता है) के साथ किया जाता था। उस समय मेटल गेट्स को फिर से पेश किया गया था जब SiO2 मुख्य धारा CMOS प्रौद्योगिकी में गेट ऑक्साइड के रूप में हेफ़नियम ऑक्साइड जैसे [[उच्च-के ढांकता हुआ]] द्वारा डाइलेक्ट्रिक्स को प्रतिस्थापित किया जा रहा है।[8] गेट डाइलेक्ट्रिक के साथ इंटरफेस पर भी, पॉलीसिलिकॉन एक SiO बनाता हैx परत। इसके अलावा, फर्मी लेवल पिनिंग होने की उच्च संभावना बनी हुई है।[9] तो डोप्ड पॉली के साथ प्रभाव थ्रेसहोल्ड वोल्टेज की अवांछित कमी है जिसे सर्किट सिमुलेशन के दौरान ध्यान में नहीं रखा गया था। थ्रेसहोल्ड वोल्टेज में इस तरह की भिन्नता से बचने के लिए|vthMOSFET के, वर्तमान में पॉलीसिलिकॉन पर मेटल गेट को प्राथमिकता दी जाती है।

यह भी देखें

संदर्भ

  1. Rios, R.; Arora, N.D. (1994). "MOSFETs के लिए एक विश्लेषणात्मक पॉलीसिलिकॉन रिक्तीकरण प्रभाव मॉडल". IEEE Electron Device Letters. 15 (4): 129–131. doi:10.1109/55.285407. S2CID 9878129.
  2. Rios, R.; Arora, N.D. (1994). "पॉलीसिलिकॉन रिक्तीकरण प्रभाव की मॉडलिंग और सबमाइक्रोमीटर सीएमओएस सर्किट प्रदर्शन पर इसका प्रभाव". IEEE Transactions on Electron Devices. 42 (5): 935–943. doi:10.1109/16.381991.
  3. Schuegraf, K.F.; King, C.C.; Hu, C. (1993). "पतली ऑक्साइड एमओएस प्रौद्योगिकी में पॉलीसिलिकॉन की कमी का प्रभाव" (PDF). Proceedings International Symposium: VLSI Technology Systems and Applications. pp. 86–90.
  4. H. P. Tuinhout, A. H. Montree, J. Schmitz and P. A. Stolk, Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors, IEEE International Electron Device Meeting, Technical Digest pp. 631-634, 1997.
  5. "ARM, IBM, Samsung, GLOBALFOUNDRIES and Synopsys Announce Delivery of 32/28nm HKMG Vertically Optimized Design Platform". news.synopsys.com (in English). Archived from the original on July 14, 2016. Retrieved 2022-05-04.
  6. "ग्लोबल फाउंड्रीज". Archived from the original on 2013-05-09. Retrieved 2012-03-28.
  7. "From Sand to Silicon: The Making of Chip" (Press release). Intel Technology. Nov 11, 2011. Retrieved 2013-06-08. {{cite press release}}: |archive-date= requires |archive-url= (help)
  8. Chau, Robert (Nov 6, 2003). "Gate Dielectric Scaling for CMOS: from SiO2/PolySi to High-K/Metal-Gate" (White paper) (Press release). Intel Technology. Retrieved 2013-06-08. {{cite press release}}: |archive-date= requires |archive-url= (help)
  9. Hobbs, C.C.; Fonseca, L. R. C.; Knizhnik, A. (2004). "Fermi-level pinning at the polysilicon/metal oxide interface-Part I". IEEE Transactions on Electron Devices. 51 (6): 971–977. doi:10.1109/TED.2004.829513. S2CID 45952996.