स्थानीय रूप से सघन समूह
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (March 2011) (Learn how and when to remove this template message) |
गणित में, एक स्थानीय रूप से कॉम्पैक्ट समूह एक टोपोलॉजिकल समूह जी है जिसके लिए अंतर्निहित टोपोलॉजी स्थानीय रूप स्थानीय रूप से सघन स्थान और हॉसडॉर्फ़ स्थान है। स्थानीय रूप से सघन समूह महत्वपूर्ण हैं क्योंकि पूरे गणित में उत्पन्न होने वाले समूहों के कई उदाहरण स्थानीय रूप से सघन होते हैं और ऐसे समूहों में एक प्राकृतिक माप (गणित) होता है जिसे हार माप कहा जाता है। यह किसी को जी पर बोरेल माप कार्यों के अभिन्न अंग को परिभाषित करने की अनुमति देता है ताकि मानक विश्लेषण धारणाएं जैसे कि फूरियर रूपांतरण और एलपी स्पेस | रिक्त स्थान को सामान्यीकृत किया जा सकता है।
परिमित समूह समूह प्रतिनिधित्व के कई परिणाम समूह के औसत से सिद्ध होते हैं। कॉम्पैक्ट समूहों के लिए, इन प्रमाणों के संशोधन से सामान्यीकृत उसका अभिन्न के संबंध में औसत के समान परिणाम मिलते हैं। सामान्य स्थानीय रूप से कॉम्पैक्ट सेटिंग में, ऐसी तकनीकों की आवश्यकता नहीं होती है। परिणामी सिद्धांत हार्मोनिक विश्लेषण का एक केंद्रीय हिस्सा है। स्थानीय रूप से कॉम्पैक्ट एबेलियन समूहों के लिए प्रतिनिधित्व सिद्धांत का वर्णन पोंट्रीगिन द्वंद्व द्वारा किया गया है।
उदाहरण और प्रतिउदाहरण
- कोई भी कॉम्पैक्ट समूह स्थानीय रूप से कॉम्पैक्ट होता है।
- विशेष रूप से गुणन के तहत इकाई मापांक की जटिल संख्याओं का वृत्त समूह टी सघन है, और इसलिए स्थानीय रूप से सघन है। सर्कल समूह ऐतिहासिक रूप से पहले टोपोलॉजिकली गैर-तुच्छ समूह के रूप में कार्य करता है जिसमें स्थानीय कॉम्पैक्टनेस की संपत्ति भी होती है, और इस तरह यहां प्रस्तुत अधिक सामान्य सिद्धांत की खोज को प्रेरित किया जाता है।
- कोई भी पृथक समूह स्थानीय रूप से सघन होता है। इसलिए स्थानीय रूप से सघन समूहों का सिद्धांत सामान्य समूहों के सिद्धांत को शामिल करता है क्योंकि किसी भी समूह को असतत टोपोलॉजी दी जा सकती है।
- झूठ समूह, जो स्थानीय रूप से यूक्लिडियन हैं, सभी स्थानीय रूप से कॉम्पैक्ट समूह हैं।
- हॉसडॉर्फ़ टोपोलॉजिकल वेक्टर स्पेस स्थानीय रूप से कॉम्पैक्ट होता है यदि और केवल यदि यह परिमित-आयामी है।
- यदि वास्तविक संख्याओं के उपसमूह के रूप में सापेक्ष टोपोलॉजी दी जाए तो परिमेय संख्याओं Q का योगात्मक समूह स्थानीय रूप से सघन नहीं होता है। यदि असतत टोपोलॉजी दी जाए तो यह स्थानीय रूप से कॉम्पैक्ट है।
- p-adic संख्या का योगात्मक समूह|p-adic संख्या Qp किसी भी अभाज्य संख्या p के लिए स्थानीय रूप से संहत है।
गुण
समरूपता के आधार पर, किसी टोपोलॉजिकल समूह के लिए अंतर्निहित स्थान की स्थानीय सघनता को केवल पहचान पर जांचने की आवश्यकता होती है। अर्थात्, एक समूह G एक स्थानीय रूप से कॉम्पैक्ट स्थान है यदि और केवल यदि पहचान तत्व में एक सघन स्थान पड़ोस (गणित) हो। इसका तात्पर्य यह है कि प्रत्येक बिंदु पर सघन पड़ोस का एक स्थानीय आधार होता है।
एक टोपोलॉजिकल समूह हॉसडॉर्फ है यदि और केवल तभी जब तुच्छ एक-तत्व उपसमूह बंद हो।
स्थानीय रूप से कॉम्पैक्ट समूह का प्रत्येक बंद सेट उपसमूह स्थानीय रूप से कॉम्पैक्ट होता है। (तर्कसंगत समूह के अनुसार बंद करने की स्थिति आवश्यक है।) इसके विपरीत, हॉसडॉर्फ समूह का प्रत्येक स्थानीय रूप से कॉम्पैक्ट उपसमूह बंद है। स्थानीय रूप से संहत समूह का प्रत्येक भागफल समूह स्थानीय रूप से संहत होता है। स्थानीय रूप से सघन समूहों के एक परिवार का प्रत्यक्ष उत्पाद (समूह सिद्धांत) स्थानीय रूप से सघन होता है यदि और केवल तभी जब सीमित संख्या में कारकों को छोड़कर सभी वास्तव में सघन हों।
टोपोलॉजिकल समूह हमेशा टोपोलॉजिकल रिक्त स्थान के रूप में पूरी तरह से नियमित होते हैं। स्थानीय रूप से सघन समूहों में सामान्य स्थान होने का मजबूत गुण होता है।
प्रत्येक स्थानीय रूप से कॉम्पैक्ट समूह जो प्रथम गणनीय स्थान है | प्रथम-गणनीय एक टोपोलॉजिकल समूह के रूप में मेट्रिसेबल है (यानी टोपोलॉजी के साथ संगत एक बाएं-अपरिवर्तनीय मीट्रिक दिया जा सकता है) और पूर्ण स्थान। यदि इसके अलावा स्थान द्वितीय गणनीय स्थान|द्वितीय-गणनीय है, तो मीट्रिक को उचित चुना जा सकता है। (टोपोलॉजिकल ग्रुप#मेट्रिसेबिलिटी पर लेख देखें।)
पोलिश समूह G में, null set#Haar null का σ-बीजगणित गणनीय श्रृंखला स्थिति को संतुष्ट करता है यदि और केवल यदि G स्थानीय रूप से कॉम्पैक्ट है।[1]
स्थानीय रूप से सघन एबेलियन समूह
किसी भी स्थानीय रूप से कॉम्पैक्ट एबेलियन (एलसीए) समूह ए के लिए, निरंतर समरूपता का समूह
- होम(ए, एस1)
ए से सर्कल समूह फिर से स्थानीय रूप से कॉम्पैक्ट है। पोंट्रीगिन द्वंद्व का दावा है कि यह फ़नकारक श्रेणियों की तुल्यता उत्पन्न करता है
- एलसीएऑप → एलसीए.
यह फ़ैक्टर टोपोलॉजिकल समूहों के कई गुणों का आदान-प्रदान करता है। उदाहरण के लिए, परिमित समूह परिमित समूहों के अनुरूप होते हैं, सघन समूह असतत समूहों के अनुरूप होते हैं, और मेट्रिसेबल स्थान समूह सघन समूहों के गणनीय संघों के अनुरूप होते हैं (और सभी कथनों में इसके विपरीत)।
एलसीए समूह एक सटीक श्रेणी बनाते हैं, जिसमें स्वीकार्य मोनोमोर्फिज्म बंद उपसमूह होते हैं और स्वीकार्य एपिमोर्फिज्म टोपोलॉजिकल भागफल मानचित्र होते हैं। इसलिए इस श्रेणी के के-सिद्धांत स्पेक्ट्रम (टोपोलॉजी) पर विचार करना संभव है। Clausen (2017) ने दिखाया है कि यह क्रमशः Z और R के बीजगणितीय K-सिद्धांत, पूर्णांक और वास्तविक के बीच अंतर को मापता है, इस अर्थ में कि एक समरूप पुलबैक है
- K(Z) → K(R) → K(LCA)।
यह भी देखें
- Compact group
- Complete field
- Locally compact field
- Locally compact space
- Locally compact quantum group
- Ordered topological vector space
- Topological abelian group
- Topological field
- Topological group
- Topological module
- Topological ring
- Topological semigroup
- Topological vector space
संदर्भ
- ↑ Slawomir Solecki (1996) On Haar Null Sets, Fundamenta Mathematicae 149
अग्रिम पठन
- Folland, Gerald B. (1995), A Course in Abstract Harmonic Analysis, CRC Press, ISBN 978-0-8493-8490-5.
- Pontri︠a︡gin, Lev Semenovich (1939). Topological groups. Translated by Lehmer, Emma. Princeton University Press. OCLC 65707155.
- Weil, Andr´e (1940). L'int´egration dans les groupes topologiques et ses applications [L'intégration dans les groupes topologiques et ses applications] (in French). Paris: Hermann. OCLC 490312990.
{{cite book}}
: CS1 maint: unrecognized language (link) - Montgomery, Deane; Zippin, Leo (1955). Topological transformation groups. Interscience Publishers. ISBN 978-0-486-82449-9. OCLC 1019833944.
- Hewitt, Edwin; Ross, Kenneth A. (1963). "Abstract Harmonic Analysis". Grundlehren der Mathematischen Wissenschaften. I (115). doi:10.1007/978-3-662-26755-4. ISBN 978-3-662-24595-8. ISSN 0072-7830.
- Tao, Terence (2014-07-17). Hilbert's Fifth Problem and Related Topics. Graduate Studies in Mathematics. Vol. 153. Providence, Rhode Island: American Mathematical Society. doi:10.1090/gsm/153. ISBN 978-1-4704-1564-8.
- Tao, Terence (2011-08-17). Notes on local groups. What's new.