बेटमैन समीकरण

From Vigyanwiki
Revision as of 12:09, 23 May 2023 by alpha>Indicwiki (Created page with "{{Short description|Mathematical model in nuclear physics}}नाभिकीय भौतिकी में, बेटमैन समीकरण एक गणितीय...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

नाभिकीय भौतिकी में, बेटमैन समीकरण एक गणितीय मॉडल है जो क्षय दर और प्रारंभिक प्रचुरता के आधार पर क्षय श्रृंखला में बहुतायत और गतिविधियों को समय के कार्य के रूप में वर्णित करता है। मॉडल 1905 में अर्नेस्ट रदरफोर्ड द्वारा तैयार किया गया था[1] और विश्लेषणात्मक समाधान 1910 में हैरी बेटमैन द्वारा प्रदान किया गया था।[2]

अगर, समय टी पर, वहाँ हैं आइसोटोप के परमाणु जो आइसोटोप में विघटित हो जाता है की दर पर , k-चरण क्षय श्रृंखला में समस्थानिकों की मात्रा इस प्रकार विकसित होती है:

(यह क्षय शाखाओं को संभालने के लिए अनुकूलित किया जा सकता है)। जबकि इसे i = 2 के लिए स्पष्ट रूप से हल किया जा सकता है, लंबी श्रृंखलाओं के लिए सूत्र जल्दी से बोझिल हो जाते हैं।[3] बेटमैन समीकरण एक शास्त्रीय मास्टर समीकरण है जहां संक्रमण दर केवल एक प्रजाति (i) से अगली (i+1) तक की अनुमति है लेकिन कभी भी विपरीत अर्थ में नहीं (i+1 से i वर्जित है)।

बेटमैन ने चरों के लाप्लास रूपांतरण को लेकर राशियों के लिए एक सामान्य स्पष्ट सूत्र पाया।

(इसे स्रोत शर्तों के साथ भी विस्तारित किया जा सकता है, यदि आइसोटोप i के अधिक परमाणु स्थिर दर पर बाहरी रूप से प्रदान किए जाते हैं)।[4]

241Pu के लिए बेटमैन-फ़ंक्शन के साथ मात्रा की गणना

जबकि बेटमैन फॉर्मूला को कंप्यूटर कोड में लागू किया जा सकता है, अगर कुछ आइसोटोप जोड़ी के लिए, महत्व के नुकसान से कम्प्यूटेशनल त्रुटियां हो सकती हैं। इसलिए, अन्य विधियाँ जैसे कि साधारण अवकल समीकरणों के लिए संख्यात्मक विधियाँ या मैट्रिक्स घातांक विधि भी उपयोग में हैं।[5]

उदाहरण के लिए, तीन समस्थानिकों की एक श्रृंखला के साधारण मामले के लिए संबंधित बेटमैन समीकरण कम हो जाता है

जो आइसोटोप की गतिविधि के लिए निम्न सूत्र देता है (प्रतिस्थापित करके )


यह भी देखें

संदर्भ

  1. Rutherford, E. (1905). Radio-activity. University Press. p. 331
  2. Bateman, H. (1910, June). The solution of a system of differential equations occurring in the theory of radioactive transformations. In Proc. Cambridge Philos. Soc (Vol. 15, No. pt V, pp. 423–427) https://archive.org/details/cbarchive_122715_solutionofasystemofdifferentia1843
  3. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2013-09-27. Retrieved 2013-09-22.
  4. "Nucleonica".
  5. Logan J. Harr. Precise Calculation of Complex Radioactive Decay Chains. M.Sc thesis Air Force Institute of Technology. 2007. http://www.dtic.mil/dtic/tr/fulltext/u2/a469273.pdf