परवर्ती फलन
गणित में, परवर्ती फलन या पुनरावर्ती संचालन एक प्राकृतिक संख्या को अगले नंबर पर भेजता है। परवर्ती फलन को S द्वारा दर्शाया जाता है, इसलिए S(n) = n +1 उदाहरण के लिए, S(1) = 2 और S(2) = 3 परवर्ती फलन एक पूर्वग पुनरावर्ती फलन बनाने के लिए उपयोग किए जाने वाले मौलिक घटकों में से एक है।
शून्यवाँ हाइपरऑपरेशन के संदर्भ में परवर्ती संचालन को ज़ेरेशन के रूप में भी जाना जाता है: H0(a, b) = 1 + b इस संदर्भ में, ज़ेरेशन का विस्तार जोड़ होता है, जिसे बार-बार परवर्ती के रूप में परिभाषित किया गया है।
अवलोकन
परवर्ती फलन पीनो स्वयंसिद्धों को बताने के लिए उपयोग की जाने वाली औपचारिक भाषा का हिस्सा है, जो प्राकृतिक संख्याओं की संरचना को औपचारिक बनाता है। इस औपचारिकता में, परवर्ती फलन प्राकृतिक संख्याओं पर पूर्वग पुनरावर्ती होता है, जिसके संदर्भ में मानक प्राकृतिक संख्याओं और जोड़ को परिभाषित किया जाता है। उदाहरण के लिए, 1 को S(0) के रूप में परिभाषित किया गया है, और प्राकृतिक संख्याओं पर जोड़ को पुनरावर्ती रूप से परिभाषित किया गया है:
m + 0 = m, m + S(n) = S(m + n).
इसका उपयोग किन्हीं दो प्राकृतिक संख्याओं के योग की गणना करने के लिए किया जा सकता है। उदाहरण के लिए,5 + 2 = 5 + S(1) = S(5 + 1) = S(5 + S(0)) = S(S(5 + 0)) = S(S(5)) = S(6) = 7।
सेट सिद्धांत के भीतर प्राकृतिक संख्याओं के कई निर्माण प्रस्तावित किए गए हैं। उदाहरण के लिए, जॉन वॉन न्यूमैन संख्या 0 को खाली सेट {} के रूप में और n के परवर्ती, S(n) को समुच्चय n ∪ {n} के रूप में बनाता है। अनंत का स्वयंसिद्ध तब एक सेट के अस्तित्व की गारंटी देता है जिसमें 0 होता है और एस के संबंध में क्लोजर (गणित) क्लोजर ऑपरेटर होता है। ऐसे सबसे छोटे सेट को 'एन' द्वारा दर्शाया जाता है, और इसके सदस्यों को प्राकृतिक संख्या कहा जाता है।[1]
परवर्ती फलन हाइपरऑपरेशंस के अनंत ग्रेज़गोर्स्की पदानुक्रम का स्तर-0 आधार है, जिसका उपयोग जोड़, गुणा, घातांक, tetration इत्यादि बनाने के लिए किया जाता है। इसका अध्ययन 1986 में हाइपरऑपरेशंस के पैटर्न के सामान्यीकरण से संबंधित एक जांच में किया गया था।[2] यह संगणनीय कार्य द्वारा कम्प्यूटेबिलिटी के लक्षण वर्णन में उपयोग किए जाने वाले आदिम फ़ंक्शंस में से एक है।
यह भी देखें
- परवर्तीी क्रम
- परवर्तीी कार्डिनल
- वृद्धि और कमी ऑपरेटर
- अनुक्रम
संदर्भ
- ↑ Halmos, Chapter 11
- ↑ Rubtsov, C.A.; Romerio, G.F. (2004). "एकरमैन का कार्य और नई अंकगणितीय संक्रियाएँ" (PDF).
- Paul R. Halmos (1968). Naive Set Theory. Nostrand.