उपविषय

From Vigyanwiki

श्रेणी सिद्धांत में, गणित की एक शाखा, एक उप-वस्तु, समान्य रूप से बोलना, एक वस्तु (श्रेणी सिद्धांत) है जो उसी श्रेणी (गणित) में किसी अन्य वस्तु के अंदर स्थित होती है। यह धारणा अवधारणाओं का सामान्यीकरण है जैसे उपसमुच्चय सिद्धांत से उपसमुच्चय, समूह सिद्धांत से उपसमूह,[1] और टोपोलॉजी से उपस्थान (टोपोलॉजी) चूँकि वस्तुओं की विस्तृत संरचना श्रेणी सिद्धांत में सारहीन है, उप-वस्तु की परिभाषा एक रूपवाद पर निर्भर करती है जो बताती है कि तत्वों के उपयोग पर निर्भर होने के अतिरिक्त एक वस्तु दूसरे के अंदर कैसे स्थित होती है

भागफल वस्तु. यह भागफल सेट, भागफल समूह, भागफल रिक्त स्थान, भागफल ग्राफ़ आदि जैसी अवधारणाओं का सामान्यीकरण करता है।

परिभाषाएँ

लक्ष्य के आधार पर, उप-वस्तु की एक उपयुक्त श्रेणीबद्ध परिभाषा संदर्भ के साथ भिन्न हो सकती है। एक सामान्य परिभाषा इस प्रकार है.

आइए विस्तार से जानते हैंकिसी श्रेणी की वस्तु होना। दो एकरूपताएँ दी गईं

कोडोमेन के साथ, हम एक तुल्यता संबंध को परिभाषित करते हैं यदि कोई समरूपता मौजूद है साथ .

समान रूप से, हम लिखते हैं अगर गणितीय शब्दजाल#कारक के माध्यम से-अर्थात्, यदि अस्तित्व है ऐसा है कि . द्विआधारी संबंध द्वारा परिभाषित

कोडोमेन के साथ मोनोमोर्फिज्म पर एक तुल्यता संबंध है, और इन मोनोमोर्फिज्म के संबंधित तुल्यता वर्ग के 'उपविषय' हैं.

संबंध ≤ उप-वस्तुओं के संग्रह पर आंशिक क्रम उत्पन्न करता है .

किसी वस्तु की उप-वस्तुओं का संग्रह वास्तव में एक उचित वर्ग हो सकता है; इसका मतलब यह है कि दी गई चर्चा कुछ हद तक ढीली है। यदि प्रत्येक वस्तु का उप-वस्तु-संग्रह एक सेट (गणित) है, तो श्रेणी को अच्छी तरह से संचालित या, शायद ही कभी, स्थानीय रूप से छोटा कहा जाता है (यह स्थानीय रूप से छोटी श्रेणी शब्द के एक अलग उपयोग के साथ टकराव होता है, अर्थात् रूपवाद का एक सेट होता है) किन्हीं दो वस्तुओं के बीच)।

'भागफल वस्तु' की दोहरी अवधारणा प्राप्त करने के लिए, मोनोमोर्फिज्म को ऊपर एपिमोर्फिज्म से बदलें और तीरों को उल्टा करें। ए की एक भागफल वस्तु तब डोमेन ए के साथ एपिमोर्फिज्म का एक समतुल्य वर्ग है।

हालाँकि, कुछ संदर्भों में ये परिभाषाएँ अपर्याप्त हैं क्योंकि वे उप-वस्तु या भागफल वस्तु की अच्छी तरह से स्थापित धारणाओं से मेल नहीं खाती हैं। टोपोलॉजिकल स्पेस की श्रेणी में, मोनोमोर्फिज्म सटीक रूप से इंजेक्टिव निरंतर कार्य हैं; लेकिन सभी इंजेक्टिव निरंतर कार्य उप-स्थान एम्बेडिंग नहीं हैं। अंगूठियों की श्रेणी में, समावेशन एक प्रतीकवाद है लेकिन इसका भागफल नहीं है दोतरफा आदर्श से. ऐसे मानचित्र प्राप्त करने के लिए जो वास्तव में उप-वस्तु एम्बेडिंग या भागफल की तरह व्यवहार करते हैं, न कि मनमाने इंजेक्शन फ़ंक्शन या सघन छवि वाले मानचित्रों के बजाय, किसी को अतिरिक्त परिकल्पनाओं को संतुष्ट करने वाले मोनोमोर्फिज्म और एपिमोर्फिज्म तक ही सीमित रहना चाहिए। इसलिए कोई एक उप-वस्तु को तथाकथित नियमित मोनोमोर्फिज्म (मोनोमोर्फिज्म जिसे दो रूपवादों के तुल्यकारक के रूप में व्यक्त किया जा सकता है) के समतुल्य वर्ग के रूप में परिभाषित कर सकता है और एक भागफल वस्तु को नियमित एपिमोर्फिज्म (रूपवाद जिसे एक के रूप में व्यक्त किया जा सकता है) के किसी भी समतुल्य वर्ग के रूप में परिभाषित किया जा सकता है। दो आकारिकी का सहतुल्यकारक)

व्याख्या

यह परिभाषा श्रेणी सिद्धांत के बाहर एक उप-वस्तु की सामान्य समझ से मेल खाती है। जब श्रेणी की वस्तुएं सेट होती हैं (संभवतः अतिरिक्त संरचना के साथ, जैसे कि समूह संरचना) और रूपवाद सेट फ़ंक्शन होते हैं (अतिरिक्त संरचना को संरक्षित करते हुए), तो कोई अपनी छवि के संदर्भ में एक मोनोमोर्फिज्म के बारे में सोचता है। मोनोमोर्फिज्म का एक तुल्यता वर्ग वर्ग में प्रत्येक मोनोमोर्फिज्म की छवि से निर्धारित होता है; अर्थात्, किसी वस्तु T में दो मोनोमोर्फिज्म f और g समतुल्य हैं यदि और केवल यदि उनकी छवियां T के समान उपसमुच्चय (इस प्रकार, उप-वस्तु) हैं। उस स्थिति में समरूपता है उनके डोमेन के अंतर्गत डोमेन के संबंधित तत्व क्रमशः एफ और जी द्वारा टी के समान तत्व पर मैप होते हैं; यह समतुल्यता की परिभाषा को स्पष्ट करता है।

उदाहरण

सेट में, सेट की श्रेणी, का एक उप-वस्तु के उपसमुच्चय बी से मेल खाता है, या छवि के साथ बी से सुसज्जित सेट से सभी मानचित्रों का संग्रह (गणित) बिल्कुल बी। सेट में किसी सेट का सबऑब्जेक्ट आंशिक क्रम केवल उसका उपसमुच्चय जाली (आदेश) है।

ग्रुप में, समूहों की श्रेणी, के उप-वस्तु के उपसमूह के अनुरूप हैं।

आंशिक रूप से क्रमित वर्ग P = (P, ≤) को देखते हुए, हम वस्तुओं के रूप में P के तत्वों और p से q तक एक एकल तीर के साथ एक श्रेणी बना सकते हैं। iff pq. यदि P में सबसे बड़ा तत्व है, तो इस सबसे बड़े तत्व का उप-विषय आंशिक क्रम P ही होगा। ऐसा आंशिक रूप से इसलिए है क्योंकि ऐसी श्रेणी के सभी तीर मोनोमोर्फिज्म होंगे।

किसी टर्मिनल वस्तु के सबऑब्जेक्ट को सबटर्मिनल वस्तु कहा जाता है।

यह भी देखें

टिप्पणियाँ

  1. Mac Lane, p. 126


संदर्भ

  • Mac Lane, Saunders (1998), Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5 (2nd ed.), New York, NY: Springer-Verlag, ISBN 0-387-98403-8, Zbl 0906.18001
  • Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001.