रैखिक संभाव्यता मॉडल
आंकड़ों में, एक रैखिक संभावना मॉडल (एलपीएम) बाइनरी रिग्रेशन मॉडल का एक विशेष मामला है। यहां प्रत्येक अवलोकन के लिए आश्रित और स्वतंत्र चर मान लेते हैं जो या तो 0 या 1 हैं। किसी एक मामले में 0 या 1 के अवलोकन की संभावना को एक या अधिक निर्भर और स्वतंत्र चर के आधार पर माना जाता है। रैखिक संभाव्यता मॉडल के लिए, यह संबंध विशेष रूप से सरल है, और मॉडल को रैखिक प्रतिगमन द्वारा फिट करने की अनुमति देता है।
मॉडल मानता है कि, एक द्विआधारी परिणाम (बर्नौली परीक्षण) के लिए, , और इसके व्याख्यात्मक चर के संबंधित वेक्टर, ,[1]
इस मॉडल के लिए,
और इसलिए मापदंडों के वेक्टर का अनुमान कम से कम वर्गों का उपयोग करके लगाया जा सकता है। फिटिंग का यह तरीका अक्षम होगा,[1]और भारित न्यूनतम वर्गों के आधार पर पुनरावृत्त योजना को अपनाकर सुधार किया जा सकता है,[1]जिसमें पिछले पुनरावृत्ति के मॉडल का उपयोग सशर्त भिन्नताओं के अनुमानों की आपूर्ति के लिए किया जाता है, , जो टिप्पणियों के बीच भिन्न होगा। यह दृष्टिकोण अधिकतम संभावना से मॉडल को फ़िट करने से संबंधित हो सकता है।[1]
इस मॉडल की एक खामी यह है कि जब तक इस पर प्रतिबंध नहीं लगाया जाता है , अनुमानित गुणांक इकाई अंतराल के बाहर की संभावनाओं को इंगित कर सकते हैं . इस कारण से, लॉग मॉडल या प्रोबिट मॉडल जैसे मॉडल अधिक सामान्य रूप से उपयोग किए जाते हैं।
अव्यक्त-चर सूत्रीकरण
अधिक औपचारिक रूप से, एलपीएम एक अव्यक्त-चर सूत्रीकरण से उत्पन्न हो सकता है (आमतौर पर अर्थमिति साहित्य में पाया जाता है, [2]), इस प्रकार है: निम्नलिखित प्रतिगमन मॉडल को एक अव्यक्त (अदृश्य) आश्रित चर के साथ मान लें:
यहाँ महत्वपूर्ण धारणा यह है कि इस प्रतिगमन की त्रुटि अवधि शून्य समान यादृच्छिक चर के आसपास एक सममित है, और इसलिए, शून्य का मतलब है। का संचयी वितरण समारोह यहाँ है सूचक चर को परिभाषित कीजिए अगर , और शून्य अन्यथा, और सशर्त संभाव्यता पर विचार करें
लेकिन यह रैखिक संभावना मॉडल है,
मैपिंग के साथ
यह विधि एक द्विआधारी चर के सशर्त संभाव्यता मॉडल को प्राप्त करने के लिए एक सामान्य उपकरण है: यदि हम मानते हैं कि त्रुटि शब्द का वितरण लॉजिस्टिक है, तो हम लॉगिट मॉडल प्राप्त करते हैं, जबकि अगर हम मानते हैं कि यह सामान्य है, तो हम प्रोबिट प्राप्त करते हैं। मॉडल और, अगर हम मानते हैं कि यह एक वेइबुल वितरण का लघुगणक है, सामान्यीकृत रैखिक मॉडल | पूरक लॉग-लॉग मॉडल।
यह भी देखें
संदर्भ
अग्रिम पठन
- Aldrich, John H.; Nelson, Forrest D. (1984). "The Linear Probability Model". Linear Probability, Logit, and Probit Models. Sage. pp. 9–29. ISBN 0-8039-2133-0.
- Amemiya, Takeshi (1985). "Qualitative Response Models". Advanced Econometrics. Oxford: Basil Blackwell. pp. 267–359. ISBN 0-631-13345-3.
- Wooldridge, Jeffrey M. (2013). "A Binary Dependent Variable: The Linear Probability Model". Introductory Econometrics: A Modern Approach (5th international ed.). Mason, OH: South-Western. pp. 238–243. ISBN 978-1-111-53439-4.
- Horrace, William C., and Ronald L. Oaxaca. "Results on the Bias and Inconsistency of Ordinary Least Squares for the Linear Probability Model." Economics Letters, 2006: Vol. 90, P. 321–327