भार्गव फैक्टोरियल

From Vigyanwiki
Revision as of 09:03, 5 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Generalization of the mathematical factorial}} गणित में, भार्गव का कारख़ाने का फ़ंक्श...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, भार्गव का कारख़ाने का फ़ंक्शन, या बस भार्गव फैक्टोरियल, 1996 में हार्वर्ड विश्वविद्यालय में अपने थीसिस के हिस्से के रूप में फील्ड्स मेडल विजेता गणितज्ञ मंजुल भार्गव द्वारा विकसित फैक्टोरियल फ़ंक्शन का एक निश्चित सामान्यीकरण है। भार्गव फैक्टोरियल में कई संख्या सिद्धांत की संपत्ति है |सामान्य फैक्टोरियल से जुड़े संख्या-सैद्धांतिक परिणाम तब भी सत्य रहते हैं, जब फैक्टोरियल को भार्गव फैक्टोरियल द्वारा प्रतिस्थापित कर दिया जाता है। समुच्चय के एक मनमाना अनंत समुच्चय S का उपयोग करना पूर्णांकों में से, भार्गव ने प्रत्येक धनात्मक पूर्णांक k के साथ एक धनात्मक पूर्णांक जोड़ा, जिसे उन्होंने k से दर्शाया!S, इस गुण के साथ कि यदि कोई S = लेता है स्वयं, फिर k से संबद्ध पूर्णांक, अर्थात k ! , k का सामान्य भाज्य बन जाएगा।[1]


सामान्यीकरण के लिए प्रेरणा

एक गैर-ऋणात्मक पूर्णांक n का भाज्य, जिसे n! द्वारा निरूपित किया जाता है, n से कम या उसके बराबर सभी सकारात्मक पूर्णांकों का गुणनफल है। उदाहरण के लिए, 5! = 5×4×3×2×1 = 120. परंपरा के अनुसार, 0 का मान! इसे 1 के रूप में परिभाषित किया गया है। यह शास्त्रीय तथ्यात्मक फलन संख्या सिद्धांत के कई प्रमेयों में प्रमुखता से दिखाई देता है। इनमें से कुछ प्रमेय निम्नलिखित हैं।[1]

  1. किसी भी धनात्मक पूर्णांक m और n के लिए, (m + n)! m का गुणज है! एन!।
  2. मान लीजिए f(x) एक आदिम पूर्णांक बहुपद है, अर्थात, एक बहुपद जिसमें गुणांक पूर्णांक होते हैं और एक दूसरे के सापेक्ष अभाज्य होते हैं। यदि f(x) की डिग्री k है तो x के पूर्णांक मानों के लिए f(x) के मानों के सेट का सबसे बड़ा सामान्य भाजक k का भाजक है!
  3. चलो ए0, ए1, ए2, … , एn कोई भी n + 1 पूर्णांक हो। तब उनके जोड़ीवार अंतर का गुणनफल 0 का गुणज होता है! 1! … एन!।
  4. होने देना पूर्णांकों का समुच्चय हो और n कोई पूर्णांक हो। फिर पूर्णांकों के वलय से बहुपद फलनों की संख्या भागफल वलय तक द्वारा दिया गया है .

भार्गव ने अपने सामने निम्नलिखित समस्या रखी और सकारात्मक उत्तर प्राप्त किया: उपरोक्त प्रमेयों में, क्या कोई पूर्णांकों के समुच्चय को किसी अन्य समुच्चय S (का एक उपसमुच्चय) से प्रतिस्थापित कर सकता है? , या कुछ रिंग (गणित) का एक उपसमूह) और एस के आधार पर एक फ़ंक्शन को परिभाषित करता है जो प्रत्येक गैर-नकारात्मक पूर्णांक के के लिए एक मान निर्दिष्ट करता है, जिसे के द्वारा दर्शाया जाता है!S, जैसे कि k को प्रतिस्थापित करके पहले दिए गए प्रमेयों से प्राप्त कथन! के द्वारा!S सच रहें?

सामान्यीकरण

  • मान लीजिए S पूर्णांकों के समुच्चय Z का एक मनमाना अनंत उपसमुच्चय है।
  • एक अभाज्य संख्या p चुनें।
  • एक क्रमबद्ध अनुक्रम का निर्माण करें {ए0, ए1, ए2, ... } S से चुनी गई संख्याओं का क्रम इस प्रकार है (ऐसे क्रम को S का p-क्रम कहा जाता है):
  1. 0 S का कोई मनमाना तत्व है।
  2. 1 एस का कोई मनमाना तत्व इस प्रकार है कि पी की उच्चतम शक्ति जो ए को विभाजित करती है1− ए0 न्यूनतम है.
  3. 2 एस का कोई भी मनमाना तत्व ऐसा है कि पी की उच्चतम शक्ति जो (ए) को विभाजित करती है2− ए0)(ए2− ए1) न्यूनतम है.
  4. 3 एस का कोई भी मनमाना तत्व ऐसा है कि पी की उच्चतम शक्ति जो (ए) को विभाजित करती है3− ए0)(ए3− ए1)(ए3− ए2) न्यूनतम है.
  5. … और इसी तरह।
  • प्रत्येक अभाज्य संख्या p के लिए S का एक p-क्रम बनाएँ। (किसी दी गई अभाज्य संख्या p के लिए, S का p-क्रम अद्वितीय नहीं है।)
  • प्रत्येक गैर-नकारात्मक पूर्णांक k के लिए, मान लीजिए vk(एस, पी) पी की उच्चतम शक्ति है जो (ए) को विभाजित करती हैk− ए0)(एk− ए1)(एk− ए2) … (एk− एk − 1). क्रम {वि0(एस, पी), वी1(एस, पी), वी2(एस, पी), वी3(एस, पी),… } को एस का संबद्ध पी-अनुक्रम कहा जाता है। यह एस के पी-ऑर्डरिंग के किसी विशेष विकल्प से स्वतंत्र है। (हम मानते हैं कि वी0(एस, पी) = 1 हमेशा।)
  • अनंत समुच्चय S से संबद्ध पूर्णांक k के भाज्य को इस प्रकार परिभाषित किया गया है , जहां गुणनफल को सभी अभाज्य संख्याओं p पर लिया जाता है।

उदाहरण: अभाज्य संख्याओं के सेट का उपयोग करते हुए गुणनखंड

मान लीजिए S सभी अभाज्य संख्याओं का समुच्चय है P = {2, 3, 5, 7, 11,… }।

  • पी = 2 चुनें और पी का पी-ऑर्डर बनाएं।
  • एक विकल्प चुनें0 = P से मनमाने ढंग से 19.
  • एक चुनने के लिए1:
  • p की उच्चतम घात जो 2 − a को विभाजित करती है0 = −17 2 है0 = 1. इसके अलावा, पी में किसी भी ए ≠ 2 के लिए, ए - ए0 2 से विभाज्य है। इसलिए, p की उच्चतम घात जो (a) को विभाजित करती है1− ए0) न्यूनतम है जब a1 = 2 और न्यूनतम शक्ति 1 है। इस प्रकार a1 2 और v के रूप में चुना गया है1(पी, 2) = 1.
  • एक चुनने के लिए2:
  • यह देखा जा सकता है कि पी में प्रत्येक तत्व ए के लिए, उत्पाद एक्स = (ए - ए0)(ए − ए1) = (a − 19)(a − 2) 2 से विभाज्य है। इसके अलावा, जब a = 5, x 2 से विभाज्य है और यह 2 की किसी भी उच्च घात से विभाज्य नहीं है। तो, a2 5 के रूप में चुना जा सकता है। हमारे पास वी है2(पी, 2) = 2.
  • एक चुनने के लिए3:
  • यह देखा जा सकता है कि पी में प्रत्येक तत्व ए के लिए, उत्पाद एक्स = (ए - ए0)(ए − ए1)(ए − ए2) = (a − 19)(a − 2)(a − 5) 2 से विभाज्य है3 = 8. साथ ही, जब a = 17, x 8 से विभाज्य है और यह 2 की किसी भी उच्च घात से विभाज्य नहीं है। a चुनें3 = 17. इसके अलावा हमारे पास v भी है3(पी,2) = 8.
  • एक चुनने के लिए4:
  • यह देखा जा सकता है कि पी में प्रत्येक तत्व ए के लिए, उत्पाद एक्स = (ए - ए0)(ए − ए1)(ए − ए2)(ए − ए3) = (a − 19)(a − 2)(a − 5)(a − 17) 2 से विभाज्य है4 = 16. साथ ही, जब a = 23, x 16 से विभाज्य है और यह 2 की किसी भी उच्च घात से विभाज्य नहीं है। a चुनें4 = 23. इसके अलावा हमारे पास v भी है4(पी,2) = 16.
  • एक चुनने के लिए5:
  • यह देखा जा सकता है कि पी में प्रत्येक तत्व ए के लिए, उत्पाद एक्स = (ए - ए0)(ए − ए1)(ए − ए2)(ए − ए3)(ए − ए4) = (a − 19)(a − 2)(a − 5)(a − 17)(a − 23) 2 से विभाज्य है7 = 128. इसके अलावा, जब a = 31, x विभाज्य 128 है और यह 2 की किसी भी उच्च घात से विभाज्य नहीं है। a चुनें5 = 31. इसके अलावा हमारे पास v भी है5(पी,2) = 128.
  • प्रक्रिया जारी है. इस प्रकार P का 2-क्रम {19, 2, 5, 17, 23, 31,… } है और संबंधित 2-अनुक्रम {1, 1, 2, 8, 16, 128, … } है, यह मानते हुए कि v0(पी, 2) = 1.
  • पी = 3 के लिए, पी का एक संभावित पी-क्रम अनुक्रम {2, 3, 7, 5, 13, 17, 19,… } है और पी का संबंधित पी-अनुक्रम {1, 1, 1, है 3, 3, 9,… }.
  • पी = 5 के लिए, पी का एक संभावित पी-क्रम अनुक्रम {2, 3, 5, 19, 11, 7, 13,… } है और संबंधित पी-अनुक्रम {1, 1, 1, 1, है। 1, 5,…}.
  • यह दिखाया जा सकता है कि पी ≥ 7 के लिए, संबंधित पी-अनुक्रम के पहले कुछ तत्व {1, 1, 1, 1, 1, 1,… } हैं।


अभाज्य संख्याओं के समुच्चय से जुड़े पहले कुछ फैक्टोरियल निम्नानुसार प्राप्त किए जाते हैं (sequence A053657 in the OEIS).

v के मानों की तालिकाk(पी, पी) और के!P

p
k
2 3 5 7 11 k!P
0 1 1 1 1 1 1×1×1×1×1×… = 1
1 1 1 1 1 1 1×1×1×1×1×… = 1
2 2 1 1 1 1 2×1×1×1×1×… = 2
3 8 3 1 1 1 8×3×1×1×1×… = 24
4 16 3 1 1 1 16×3×1×1×1×… = 48
5 128 9 5 1 1 128×9×5×1×1×… = 5760
6 256 9 5 1 1 256×9×5×1×1×… = 11520

उदाहरण: प्राकृत संख्याओं के समुच्चय का उपयोग करते हुए गुणनखंड

माना S प्राकृत संख्याओं का समुच्चय है .

  • पी = 2 के लिए, संबंधित पी-अनुक्रम {1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256,… } है।
  • पी = 3 के लिए, संबंधित पी-अनुक्रम {1, 1, 1, 3, 3, 3, 9, 9, 9, 27, 27, 27, 81, 81, 81,… } है।
  • पी = 5 के लिए, संबंधित पी-अनुक्रम {1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25,… } है।
  • पी = 7 के लिए, संबंधित पी-अनुक्रम {1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7,… } है।
  • … और इसी तरह।

इस प्रकार प्राकृतिक संख्याओं का उपयोग करने वाले पहले कुछ फैक्टोरियल हैं

  • 0! = 1×1×1×1×1×… = 1.
  • 1! = 1×1×1×1×1×… = 1.
  • 2! = 2×1×1×1×1×… = 2.
  • 3! = 2×3×1×1×1×… = 6.
  • 4! = 8×3×1×1×1×… = 24.
  • 5! = 8×3×5×1×1×… = 120.
  • 6! = 16×9×5×1×1×… = 720.

उदाहरण: कुछ सामान्य अभिव्यक्तियाँ

निम्न तालिका में k के लिए सामान्य अभिव्यक्तियाँ हैं!S एस के कुछ विशेष मामलों के लिए.[1]

Sl. No. Set S k!S
1 Set of natural numbers k!
2 Set of even integers 2k×k!
3 Set of integers of the form an + b ak×k!
4 Set of integers of the form 2n (2k − 1)(2k − 2) … (2k − 2k − 1)
5 Set of integers of the form qn for some prime q (qk − 1)(qk − q) … (qk − qk − 1)
6 Set of squares of integers (2k)!/2


संदर्भ

  1. 1.0 1.1 1.2 Bhargava, Manjul (2000). "The Factorial Function and Generalizations" (PDF). The American Mathematical Monthly. 107 (9): 783–799. CiteSeerX 10.1.1.585.2265. doi:10.2307/2695734. JSTOR 2695734.