विघटन प्रमेय

From Vigyanwiki
Revision as of 08:01, 7 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Theorem in measure theory}} {{Use dmy dates|date=July 2020}} गणित में, विघटन प्रमेय माप सिद्धां...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, विघटन प्रमेय माप सिद्धांत और संभाव्यता सिद्धांत का परिणाम है। यह प्रश्न में माप स्थान के शून्य उपसमुच्चय के माप (गणित) के गैर-तुच्छ प्रतिबंध के विचार को कठोरता से परिभाषित करता है। यह कंडीशनिंग (संभावना) के अस्तित्व से संबंधित है। एक अर्थ में, विघटन किसी उत्पाद माप के निर्माण की विपरीत प्रक्रिया है।

प्रेरणा

यूक्लिडियन विमान R में इकाई वर्ग पर विचार करें2, S = [0, 1] × [0, 1]. द्वि-आयामी लेब्सेग माप λ के प्रतिबंध द्वारा एस पर परिभाषित संभाव्यता माप μ पर विचार करें2से S. यानी, किसी घटना E ⊆ S की संभावना बस E का क्षेत्रफल है। हम मानते हैं कि E, S का एक मापने योग्य उपसमुच्चय है।

S के एक-आयामी उपसमुच्चय पर विचार करें जैसे कि रेखा खंड Lx = {x} × [0, 1]. एलx μ-माप शून्य है; एल का प्रत्येक उपसमुच्चयx एक μ-शून्य सेट है; चूँकि लेबेस्ग्यू माप स्थान एक पूर्ण माप है,

सच होते हुए भी, यह कुछ हद तक असंतोषजनक है। यह कहना अच्छा होगा कि μ L तक ही सीमित हैx एक आयामी लेबेस्ग्यू माप λ है1, बजाय तुच्छ उपाय के। द्वि-आयामी घटना ई की संभावना तब ऊर्ध्वाधर स्लाइस ई ∩ एल की एक-आयामी संभावनाओं के लेबेस्ग एकीकरण के रूप में प्राप्त की जा सकती हैx: अधिक औपचारिक रूप से, यदि μx एल पर एक-आयामी लेबेस्ग माप को दर्शाता हैx, तब
किसी भी अच्छे E ⊆ S के लिए। विघटन प्रमेय मीट्रिक स्थानों पर उपायों के संदर्भ में इस तर्क को कठोर बनाता है।

प्रमेय का कथन

(इसके बाद, पी(एक्स) टोपोलॉजिकल स्पेस (एक्स, टी) पर बोरेल माप संभाव्यता उपायों के संग्रह को निरूपित करेगा।) प्रमेय की मान्यताएँ इस प्रकार हैं:

  • मान लें कि Y और X दो पोलिश स्पेस#रेडॉन स्पेस हैं (यानी एक टोपोलॉजिकल स्पेस जैसे कि M पर प्रत्येक बोरेल माप संभाव्यता माप आंतरिक नियमित माप है उदाहरण के लिए अलग-अलग स्पेस मीट्रिक रिक्त स्थान जिस पर प्रत्येक संभाव्यता माप एक रेडॉन माप है)।
  • मान लीजिए μ ∈ P(Y)।
  • मान लीजिए π : YX एक बोरेल-मापने योग्य फ़ंक्शन है। यहां किसी को π को Y को विघटित करने के एक फ़ंक्शन के रूप में सोचना चाहिए, Y को विभाजित करने के अर्थ में . उदाहरण के लिए, उपरोक्त प्रेरक उदाहरण के लिए, कोई परिभाषित कर सकता है , , जो वह देता है , एक टुकड़ा जिसे हम पकड़ना चाहते हैं।
  • होने देना P(X) पुशफॉरवर्ड माप हो ν = π(μ) = μ ∘ π−1. यह माप x का वितरण प्रदान करता है (जो घटनाओं से मेल खाता है ).

प्रमेय का निष्कर्ष: वहाँ मौजूद है -लगभग हर जगह संभाव्यता उपायों का विशिष्ट रूप से निर्धारित परिवार {μx}xXP(Y), जो का विघटन प्रदान करता है में , ऐसा है कि:

  • कार्यक्रम बोरेल मापने योग्य है, इस अर्थ में प्रत्येक बोरेल-मापने योग्य सेट बी ⊆ वाई के लिए एक बोरेल-मापने योग्य फ़ंक्शन है;
  • μx फाइबर (गणित) π पर रहता है−1(x): के लिए -लगभग सभी एक्स ∈ एक्स,
    और इसलिए μx(ई) = एमx(ई ∩ पी−1(x));
  • प्रत्येक बोरेल-मापने योग्य फ़ंक्शन के लिए f : Y → [0, ∞],
    विशेष रूप से, किसी भी घटना E ⊆ Y के लिए, f को E का सूचक फलन मानते हुए,[1]


अनुप्रयोग

उत्पाद स्थान

मूल उदाहरण उत्पाद रिक्त स्थान की समस्या का एक विशेष मामला था, जिस पर विघटन प्रमेय लागू होता है।

जब Y को कार्तीय गुणनफल Y = X के रूप में लिखा जाता है1 × एक्स2 और πi : वाई → एक्सi प्राकृतिक प्रक्षेपण (गणित) है, तो प्रत्येक फाइबर π1−1(x1) X के साथ विहित रूप में पहचाना जा सकता है2 और संभाव्यता मापों का एक बोरेल परिवार मौजूद है पी(एक्स में2) (जो (π) है1)(μ)-लगभग हर जगह विशिष्ट रूप से निर्धारित) जैसे कि

जो विशेष रूप से है[clarification needed]
और
सशर्त अपेक्षा का संबंध पहचानों द्वारा दिया गया है


वेक्टर कैलकुलस

विघटन प्रमेय को वेक्टर कैलकुलस में एक प्रतिबंधित माप के उपयोग को उचित ठहराने के रूप में भी देखा जा सकता है। उदाहरण के लिए, स्टोक्स के प्रमेय में जैसा कि एक कॉम्पैक्ट अंतरिक्ष सतह (गणित) के माध्यम से बहने वाले वेक्टर क्षेत्र पर लागू होता है Σ ⊂ R3, यह अंतर्निहित है कि Σ पर सही माप त्रि-आयामी लेबेस्ग माप λ का विघटन है3Σ पर, और यह कि ∂Σ पर इस माप का विघटन λ के विघटन के समान है3पर ∂Σ.[2]

सशर्त वितरण

विघटन प्रमेय को आंकड़ों में सशर्त संभाव्यता वितरण का कठोर उपचार देने के लिए लागू किया जा सकता है, जबकि सशर्त संभाव्यता के विशुद्ध रूप से अमूर्त फॉर्मूलेशन से बचा जा सकता है।[3]

यह भी देखें

संदर्भ

  1. Dellacherie, C.; Meyer, P.-A. (1978). संभावनाएँ और संभावनाएँ. North-Holland Mathematics Studies. Amsterdam: North-Holland. ISBN 0-7204-0701-X.
  2. Ambrosio, L., Gigli, N. & Savaré, G. (2005). मीट्रिक रिक्त स्थान और संभाव्यता माप के स्थान में क्रमिक प्रवाह. ETH Zürich, Birkhäuser Verlag, Basel. ISBN 978-3-7643-2428-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Chang, J.T.; Pollard, D. (1997). "विघटन के रूप में कंडीशनिंग" (PDF). Statistica Neerlandica. 51 (3): 287. CiteSeerX 10.1.1.55.7544. doi:10.1111/1467-9574.00056. S2CID 16749932.