मध्यवर्ती मूल्य प्रमेय

From Vigyanwiki
मध्यवर्ती मूल्य प्रमेय: चलो पर परिभाषित सतत कार्य हो और जाने के साथ संख्या हो . फिर कुछ मौजूद हैबीच में और ऐसा है कि .

गणितीय विश्लेषण में, मध्यवर्ती मूल्य प्रमेय बताता है कि यदि सतत फलन फलन (गणित) है जिसके फलन के क्षेत्र में अंतराल (गणित) होता है [a, b], तो यह किसी भी दिए गए मान के बीच लेता है और अंतराल के भीतर किसी बिंदु पर।

इसके दो महत्वपूर्ण परिणाम हैं:

  1. यदि निरंतर कार्य में अंतराल के अंदर विपरीत चिह्न के मान होते हैं, तो उस अंतराल (बोल्जानो के प्रमेय) में समारोह का शून्य होता है।[1] [2]
  2. एक अंतराल पर सतत कार्य की छवि (गणित) स्वयं अंतराल है।

प्रेरणा

मध्यवर्ती मूल्य प्रमेय

यह वास्तविक संख्याओं पर निरंतर कार्यों की सहज संपत्ति को दर्शाता है: दिया गयालगातार चालू ज्ञात मूल्यों के साथ और , फिर का ग्राफ क्षैतिज रेखा से गुजरना चाहिए जबकि से चलता है को . यह इस विचार का प्रतिनिधित्व करता है कि बंद अंतराल पर निरंतर कार्य का ग्राफ कागज से पेंसिल उठाए बिना खींचा जा सकता है।

प्रमेय

मध्यवर्ती मूल्य प्रमेय निम्नलिखित बताता है:

एक अंतराल पर विचार करें वास्तविक संख्याओं का और सतत कार्य . तब

  • संस्करण I. यदि के बीच की संख्या है और , वह है,
    तो वहाँ है ऐसा है कि .
  • संस्करण द्वितीय। समारोह की छवि अंतराल भी है, और इसमें शामिल है ,

टिप्पणी: संस्करण II बताता है कि फ़ंक्शन मानों के सेट (गणित) में कोई अंतर नहीं है। किसी भी दो फ़ंक्शन मानों के लिए , भले ही वे बीच के अंतराल से बाहर हों और , अंतराल में सभी बिंदु कार्य मान भी हैं,

बिना किसी आंतरिक अंतराल वाली वास्तविक संख्याओं का उपसमुच्चय अंतराल है। संस्करण I स्वाभाविक रूप से संस्करण II में निहित है।

पूर्णता से संबंध

प्रमेय निर्भर करता है, और वास्तविक संख्याओं की पूर्णता के बराबर है। मध्यवर्ती मूल्य प्रमेय परिमेय संख्या Q पर लागू नहीं होता है क्योंकि परिमेय संख्याओं के बीच अंतराल मौजूद होता है; अपरिमेय संख्याएँ उन अंतरालों को भरती हैं। उदाहरण के लिए, समारोह के लिए संतुष्ट और . हालाँकि, कोई परिमेय संख्या नहीं है ऐसा है कि , क्योंकि अपरिमेय संख्या है।

प्रमाण

प्रमेय को वास्तविक संख्याओं की पूर्णता (आदेश सिद्धांत) संपत्ति के परिणाम के रूप में सिद्ध किया जा सकता है:[3] हम पहला मामला साबित करेंगे, . दूसरा मामला भी ऐसा ही है।

होने देना सभी का सेट हो ऐसा है कि . तब से खाली नहीं है का तत्व है . तब से खाली नहीं है और ऊपर से घिरा हुआ है , पूर्णता से, सर्वोच्चता मौजूद। वह है, सबसे छोटी संख्या है जो प्रत्येक सदस्य से अधिक या उसके बराबर है . हम यह दावा करते हैं .

कुछ ठीक करो . तब से निरंतर है, है ऐसा है कि जब कभी भी . इस का मतलब है कि

सभी के लिए . सुप्रीमम के गुणों के अनुसार, कुछ मौजूद हैं जिसमें निहित है , इसलिए
उठा , हम वह जानते हैं क्योंकि की सर्वोच्चता है . इस का मतलब है कि
दोनों असमानताएँ
सभी के लिए मान्य हैं , जिससे हम निष्कर्ष निकालते हैं जैसा कि कहा गया है, एकमात्र संभावित मूल्य के रूप में।

टिप्पणी: मध्यवर्ती मूल्य प्रमेय को गैर-मानक विश्लेषण के तरीकों का उपयोग करके भी सिद्ध किया जा सकता है, जो कठोर पर अन्तर्ज्ञानी तर्कों को सम्मिलित करता है।[clarification needed] आधार।[4]


इतिहास

प्रमेय का रूप 5 वीं शताब्दी ईसा पूर्व के रूप में पोस्ट किया गया था, ब्रायसन ऑफ हेराक्लिआ के काम में सर्कल को स्क्वायर करने पर। ब्रायसन ने तर्क दिया कि, चूंकि दिए गए वर्ग से बड़े और छोटे दोनों वृत्त मौजूद हैं, इसलिए बराबर क्षेत्रफल का वृत्त मौजूद होना चाहिए।[5] प्रमेय को पहली बार 1817 में बर्नार्ड बोलजानो द्वारा सिद्ध किया गया था। बोलजानो ने प्रमेय के निम्नलिखित सूत्रीकरण का उपयोग किया:[6] होने देना बीच के अंतराल पर निरंतर कार्य करें और ऐसा है कि और . फिर है बीच में और ऐसा है कि .

इस फॉर्मूलेशन और आधुनिक फॉर्मूलेशन के बीच समानता को सेटिंग द्वारा दिखाया जा सकता है उचित निरंतर समारोह के लिए। ऑगस्टिन-लुई कॉची ने 1821 में आधुनिक सूत्रीकरण और प्रमाण प्रदान किया।[7] दोनों कार्यों के विश्लेषण को औपचारिक रूप देने के लक्ष्य और जोसेफ-लुई लाग्रेंज के काम से प्रेरित थे। यह विचार कि निरंतर कार्यों में मध्यवर्ती मूल्य संपत्ति होती है, पहले की उत्पत्ति होती है। साइमन स्टीवन ने समाधान के दशमलव विस्तार के निर्माण के लिए एल्गोरिदम प्रदान करके बहुपदों के लिए मध्यवर्ती मूल्य प्रमेय (उदाहरण के रूप में घन समारोह का उपयोग करके) साबित कर दिया। एल्गोरिथ्म पुनरावृत्ति के प्रत्येक चरण पर अतिरिक्त दशमलव अंक का निर्माण करते हुए, अंतराल को 10 भागों में उप-विभाजित करता है।[8] निरंतरता की औपचारिक परिभाषा दिए जाने से पहले, सतत कार्य की परिभाषा के हिस्से के रूप में मध्यवर्ती मूल्य संपत्ति दी गई थी। समर्थकों में लुई आर्बोगैस्ट शामिल हैं, जिन्होंने माना कि कार्यों में कोई छलांग नहीं है, मध्यवर्ती मूल्य संपत्ति को संतुष्ट करते हैं और वेतन वृद्धि करते हैं जिनके आकार चर के वेतन वृद्धि के आकार के अनुरूप होते हैं।[9] पहले के लेखकों ने परिणाम को सहज रूप से स्पष्ट माना और किसी प्रमाण की आवश्यकता नहीं थी। बोलजानो और कॉची की अंतर्दृष्टि निरंतरता की सामान्य धारणा को परिभाषित करना था (कॉची के मामले में बहुत छोता के संदर्भ में और बोलजानो के मामले में वास्तविक असमानताओं का उपयोग करना), और ऐसी परिभाषाओं के आधार पर प्रमाण प्रदान करना था।

सामान्यीकरण

इंटरमीडिएट वैल्यू प्रमेय जुड़ाव (टोपोलॉजी)टोपोलॉजी) की टोपोलॉजी धारणा से निकटता से जुड़ा हुआ है और मीट्रिक रिक्त स्थान में जुड़े सेटों के मूल गुणों और विशेष रूप से आर के जुड़े सबसेट से निम्नानुसार है:

  • अगर और मीट्रिक रिक्त स्थान हैं, सतत नक्शा है, और जुड़ा हुआ स्थान सबसेट है, फिर जुड़ा है। (*)
  • उपसमुच्चय जुड़ा हुआ है अगर और केवल अगर यह निम्नलिखित संपत्ति को संतुष्ट करता है: . (**)

वास्तव में, जुड़ाव सांस्थितिक गुण है और (*) स्थलाकृतिक स्थानों के लिए सामान्यीकरण करता है: यदि और टोपोलॉजिकल स्पेस हैं, सतत नक्शा है, और जुड़ा हुआ स्थान है, फिर जुड़ा है। निरंतर मानचित्रों के तहत जुड़ाव के संरक्षण को मध्यवर्ती मूल्य प्रमेय के सामान्यीकरण के रूप में माना जा सकता है, वास्तविक चर के वास्तविक मूल्यवान कार्यों की संपत्ति, सामान्य रिक्त स्थान में निरंतर कार्यों के लिए।

पहले बताए गए मध्यवर्ती मूल्य प्रमेय के पहले संस्करण को याद करें:

Intermediate value theorem (Version I) — Consider a closed interval in the real numbers and a continuous function . Then, if is a real number such that , there exists such that .

मध्यवर्ती मूल्य प्रमेय जुड़ाव के इन दो गुणों का तत्काल परिणाम है:[10]

Proof

By (**), is a connected set. It follows from (*) that the image, , is also connected. For convenience, assume that . Then once more invoking (**), implies that , or for some . Since , must actually hold, and the desired conclusion follows. The same argument applies if , so we are done. Q.E.D.

मध्यवर्ती मूल्य प्रमेय प्राकृतिक तरीके से सामान्यीकरण करता है: मान लीजिए कि X कनेक्टेड टोपोलॉजिकल स्पेस है और (Y, <) आदेश टोपोलॉजी से लैस कुल ऑर्डर सेट है, और चलो f : XY सतत मानचित्र बनें। अगर a और b में दो बिन्दु हैं X और u में बिंदु है Y बीच पड़ा हुआ f(a) और f(b) इसके संबंध में <, तो वहाँ मौजूद है c में X ऐसा है कि f(c) = u. मूल प्रमेय को नोट करके पुनर्प्राप्त किया जाता है R जुड़ा हुआ है और इसका प्राकृतिक टोपोलॉजिकल स्पेस ऑर्डर टोपोलॉजी है।

ब्रौवर निश्चित-बिंदु प्रमेय संबंधित प्रमेय है, जो आयाम में, मध्यवर्ती मान प्रमेय का विशेष मामला देता है।

विपरीत झूठा है

एक डार्बौक्स फ़ंक्शन वास्तविक-मूल्यवान फ़ंक्शन है f जिसमें मध्यवर्ती मूल्य गुण है, अर्थात, जो मध्यवर्ती मूल्य प्रमेय के निष्कर्ष को संतुष्ट करता है: किसी भी दो मूल्यों के लिए a और b के अधिकार क्षेत्र में f, और कोई भी y बीच में f(a) और f(b), वहाँ कुछ c बीच में a और b साथ f(c) = y. मध्यवर्ती मूल्य प्रमेय कहता है कि प्रत्येक निरंतर कार्य डार्बौक्स फ़ंक्शन है। हालाँकि, प्रत्येक डार्बौक्स फ़ंक्शन निरंतर नहीं है; अर्थात्, मध्यवर्ती मान प्रमेय का विलोम असत्य है।

उदाहरण के तौर पर समारोह को लें f : [0, ∞) → [−1, 1] द्वारा परिभाषित f(x) = sin(1/x) के लिए x > 0 और f(0) = 0. यह कार्य निरंतर नहीं है x = 0 क्योंकि समारोह की सीमा f(x) जैसा x 0 की ओर जाता है मौजूद नहीं है; अभी तक समारोह में मध्यवर्ती मूल्य संपत्ति है। कॉनवे बेस 13 फ़ंक्शन द्वारा और अधिक जटिल उदाहरण दिया गया है।

वास्तव में, डार्बौक्स प्रमेय (विश्लेषण) | डार्बौक्स प्रमेय कहता है कि कुछ अंतराल पर किसी अन्य फ़ंक्शन के व्युत्पन्न से उत्पन्न होने वाले सभी कार्यों में मध्यवर्ती मूल्य संपत्ति होती है (भले ही उन्हें निरंतर होने की आवश्यकता न हो)।

ऐतिहासिक रूप से, इस मध्यवर्ती मूल्य संपत्ति को वास्तविक-मूल्यवान कार्यों की निरंतरता की परिभाषा के रूप में सुझाया गया है;[11] इस परिभाषा को नहीं अपनाया गया था।

रचनात्मक गणित में

रचनात्मक गणित में, मध्यवर्ती मान प्रमेय सत्य नहीं है। इसके बजाय, निष्कर्ष को कमजोर करना है:

  • होने देना और वास्तविक संख्या हो और बंद अंतराल से बिंदुवार निरंतर कार्य करें वास्तविक रेखा के लिए, और मान लीजिए कि और . फिर हर सकारात्मक संख्या के लिए बिन्दु होता है इकाई अंतराल में जैसे कि .[12]


व्यावहारिक अनुप्रयोग

इसी तरह का परिणाम बोरसुक-उलम प्रमेय है, जो कहता है कि सतत नक्शा -यूक्लिडियन के लिए क्षेत्र -स्पेस हमेशा एंटीपोडल पॉइंट्स की कुछ जोड़ी को उसी स्थान पर मैप करेगा।

Proof for 1-dimensional case

Take to be any continuous function on a circle. Draw a line through the center of the circle, intersecting it at two opposite points and . Define to be . If the line is rotated 180 degrees, the value d will be obtained instead. Due to the intermediate value theorem there must be some intermediate rotation angle for which d = 0, and as a consequence f(A) = f(B) at this angle.

सामान्य तौर पर, किसी भी निरंतर कार्य के लिए जिसका डोमेन कुछ बंद उत्तल है -dimensional आकार और आकार के अंदर कोई बिंदु (जरूरी नहीं कि इसका केंद्र), दिए गए बिंदु के संबंध में दो एंटीपोडल बिंदु मौजूद हैं जिनका कार्यात्मक मूल्य समान है।

प्रमेय इस स्पष्टीकरण को भी रेखांकित करता है कि क्यों लड़खड़ाती तालिका को घुमाने से यह स्थिरता में आ जाएगी (कुछ आसानी से मिलने वाली बाधाओं के अधीन)।[13]


यह भी देखें


संदर्भ

  1. Weisstein, Eric W. "Bolzano's Theorem". MathWorld.
  2. Cates, Dennis M. (2019). Cauchy's Calcul Infinitésimal. p. 249. doi:10.1007/978-3-030-11036-9. ISBN 978-3-030-11035-2. S2CID 132587955.
  3. Essentially follows Clarke, Douglas A. (1971). Foundations of Analysis. Appleton-Century-Crofts. p. 284.
  4. Sanders, Sam (2017). "Nonstandard Analysis and Constructivism!". arXiv:1704.00281 [math.LO].
  5. Bos, Henk J. M. (2001). "The legitimation of geometrical procedures before 1590". Redefining Geometrical Exactness: Descartes' Transformation of the Early Modern Concept of Construction. Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer. pp. 23–36. doi:10.1007/978-1-4613-0087-8_2. MR 1800805.
  6. Russ, S.B. (1980). "A translation of Bolzano's paper on the intermediate value theorem". Historia Mathematica. 7 (2): 156–185. doi:10.1016/0315-0860(80)90036-1.
  7. Grabiner, Judith V. (March 1983). "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus" (PDF). The American Mathematical Monthly. 90 (3): 185–194. doi:10.2307/2975545. JSTOR 2975545.
  8. Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science. doi:10.1007/s10699-011-9223-1 See link
  9. O'Connor, John J.; Robertson, Edmund F., "मध्यवर्ती मूल्य प्रमेय", MacTutor History of Mathematics archive, University of St Andrews
  10. Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. pp. 42, 93. ISBN 978-0-07-054235-8.
  11. Smorynski, Craig (2017-04-07). MVT: A Most Valuable Theorem (in English). Springer. ISBN 9783319529561.
  12. Matthew Frank (July 14, 2020). "Interpolating Between Choices for the Approximate Intermediate Value Theorem". Logical Methods in Computer Science. 16 (3). arXiv:1701.02227. doi:10.23638/LMCS-16(3:5)2020.
  13. Keith Devlin (2007) How to stabilize a wobbly table


बाहरी संबंध