पुलबैक
गणित में, पुलबैक दो अलग-अलग, लेकिन संबंधित प्रक्रियाओं में से एक है: प्रीकंपोज़िशन और फाइबर-उत्पाद। इसका दोहरा एक पुशफॉरवर्ड (बहुविकल्पी) है.
पूर्वरचना
किसी फ़ंक्शन (गणित) के साथ प्रीकंपोज़िशन संभवतः पुलबैक की सबसे प्राथमिक धारणा प्रदान करता है: सरल शब्दों में, एक फ़ंक्शन एक चर का कहाँ स्वयं दूसरे वेरिएबल का एक फ़ंक्शन है के एक फ़ंक्शन के रूप में लिखा जा सकता है यह का पुलबैक है फ़ंक्शन द्वारा
हालाँकि, यह केवल ऐसे कार्य नहीं हैं जिन्हें इस अर्थ में वापस खींचा जा सकता है। पुलबैक को कई अन्य वस्तुओं पर लागू किया जा सकता है जैसे कि विभेदक रूप और उनके डॉ कहलमज गर्भाशय; देखना
फाइबर-उत्पाद
पुलबैक बंडल एक उदाहरण है जो प्रीकंपोज़िशन के रूप में पुलबैक की धारणा और कार्तीय वर्ग के रूप में पुलबैक की धारणा को जोड़ता है। उस उदाहरण में, फाइबर बंडल के आधार स्थान को, ऊपर प्रीकंपोज़िशन के अर्थ में, पीछे खींच लिया गया है। फ़ाइबर तब बेस स्पेस में उन बिंदुओं के साथ यात्रा करते हैं जिन पर वे लंगर डाले हुए हैं: परिणामी नया पुलबैक बंडल स्थानीय रूप से नए बेस स्पेस और (अपरिवर्तित) फाइबर के कार्टेशियन उत्पाद जैसा दिखता है। पुलबैक बंडल में दो प्रक्षेपण होते हैं: एक आधार स्थान पर, दूसरा फाइबर पर; जब फाइबर उत्पाद के रूप में व्यवहार किया जाता है तो दोनों का उत्पाद सुसंगत हो जाता है।
सामान्यीकरण और श्रेणी सिद्धांत
फाइबर-उत्पाद के रूप में पुलबैक की धारणा अंततः श्रेणी सिद्धांत पुलबैक के बहुत सामान्य विचार की ओर ले जाती है, लेकिन इसमें महत्वपूर्ण विशेष मामले हैं: बीजगणितीय ज्यामिति में उलटा छवि (और पुलबैक) शीव्स, और बीजगणितीय टोपोलॉजी और अंतर ज्यामिति में पुलबैक बंडल।
यह सभी देखें:
कार्यात्मक विश्लेषण
जब पुलबैक का अध्ययन कार्य स्थान पर कार्य करने वाले ऑपरेटर के रूप में किया जाता है, तो यह एक रैखिक ऑपरेटर बन जाता है, और इसे रैखिक मानचित्र या संरचना ऑपरेटर के ट्रांसपोज़ के रूप में जाना जाता है। इसका सहायक पुश-फॉरवर्ड है, या, कार्यात्मक विश्लेषण के संदर्भ में, स्थानांतरण ऑपरेटर है।
रिश्ता
पुलबैक की दो धारणाओं के बीच संबंध को शायद फाइबर बंडलों के अनुभाग (फाइबर बंडल) द्वारा सबसे अच्छा चित्रित किया जा सकता है: यदि फाइबर बंडल का एक भाग है ऊपर और फिर पुलबैक (प्रीकंपोज़िशन) के साथ पुलबैक (फाइबर-उत्पाद) बंडल का एक भाग है ऊपर