दोहरा आधार
रैखिक बीजगणित में, सदिश स्थान दिया गया है आधार के साथ (रैखिक बीजगणित) वेक्टर (गणित और भौतिकी) को सूचकांक सेट के लिए अनुक्रमित किया गया (की प्रमुखता का आयाम है , का दोहरा सेट सेट है दोहरे स्थान में सदिशों का उसी सूचकांक सेट के साथ मैं ऐसा हूं और बायोर्थोगोनल प्रणाली बनाएं गए है। दोहरा सेट सदैव रैखिक रूप से स्वतंत्र होता है इसलिए आवश्यक रूप से रैखिक विस्तार नहीं होता है . यदि यह फैलता है , तब आधार के लिए दोहरा आधार या पारस्परिक आधार कहा जाता है .
इसलिए अनुक्रमित वेक्टर सेट को इस रूप में निरूपित करना और , बायोर्थोगोनल होने का अर्थ है कि तत्वों की जोड़ी का आंतरिक उत्पाद के समान होता है इसलिए यदि सूचकांक समान हैं, और अन्यथा 0 के समान होता है। प्रतीकात्मक रूप से, दोहरे वेक्टर का मूल्यांकन करना मूल स्थान में वेक्टर पर :होता है|
कहाँ क्रोनकर डेल्टा प्रतीक है।
परिचय
वेक्टर के साथ संचालन करने के लिए, हमारे पास इसके घटकों की गणना करने की सीधी विधि होनी चाहिए। कार्टेशियन फ्रेम में आवश्यक ऑपरेशन वेक्टर और बेस वेक्टर का डॉट उत्पाद है।[1] उदाहरण के लिए,
कहाँ कार्टेशियन फ्रेम में आधार है। के घटक के लिए पाया जा सकता है
यद्यपि, गैर-कार्टेशियन फ्रेम में, हमारे पास जरूरी नहीं है सभी के लिए . यद्यपि, वेक्टर खोजना सदैव संभव होता है ऐसा है कि
समता कब टिकती है का दोहरा आधार है . सूचकांक की स्थिति में अंतर पर ध्यान दें .
कार्टेशियन फ्रेम में, हमारे पास है
अस्तित्व और विशिष्टता
इसलिए दोहरा सेट सदैव उपस्थित रहता है और वी से वी में इंजेक्शन देता है, अर्थात् मैपिंग जो v भेजती है अक्षर बी में यह, विशेष रूप से, कहता है कि दोहरे स्थान का आयाम V के समान या उससे बड़ा है।
यद्यपि, अनंत-आयामी V का दोहरा सेट इसके दोहरे स्थान V का विस्तार नहीं करता है∗. उदाहरण के लिए, V में मानचित्र w पर विचार करें∗V से अंतर्निहित अदिश F के लिए दिए गए में w(vi) = 1 सबके लिए मैं यह मानचित्र सभी वी पर स्पष्ट रूप से शून्येतर हैi. यदि w दोहरे आधार वाले सदिशों v का परिमित रैखिक संयोजन में होता है। इसलिए I के परिमित उपसमुच्चय K के लिए, फिर किसी भी j के लिए जो K में नहीं है, , डब्ल्यू की परिभाषा का खंडन करता है। इसलिए, यह w दोहरे समुच्चय के विस्तार में नहीं है।
अनंत-आयामी स्थान के दोहरे में मूल स्थान की तुलना में अधिक आयामीता (यह बड़ी अनंत कार्डिनैलिटी है) है, और इस प्रकार इनका ही अनुक्रमण सेट के साथ कोई आधार नहीं हो सकता है। यद्यपि, वैक्टर का दोहरा सेट उपस्थित है, जो मूल स्थान के दोहरे समरूपी उप-स्थान को परिभाषित करता है। इसके अतिरिक्त, टोपोलॉजिकल वेक्टर स्पेस के लिए, सतत दोहरे स्थान को परिभाषित किया जा सकता है, जिस स्थिति में दोहरा आधार उपस्थित हो सकता है।
परिमित-आयामी वेक्टर रिक्त स्थान
इसलिए परिमित-आयामी वेक्टर रिक्त स्थान के स्थितियों में, दोहरा सेट हमेशा दोहरा आधार होता है और इस प्रकार यह अद्वितीय होता है। इन आधारों को निरूपित किया जाता है और . यदि कोई वेक्टर पर कोवेक्टर के मूल्यांकन को युग्म के रूप में निरूपित करता है, तो बायोरथोगोनैलिटी स्थिति बन जाती है:
इसके आधार के साथ दोहरे आधार का जुड़ाव वी के आधारों के स्थान से वी के आधारों के स्थान तक नक्शा देता है, इसलिए और यह भी समरूपता है। वास्तविक संख्याओं जैसे टोपोलॉजिकल क्षेत्र के लिए, दोहरे का स्थान टोपोलॉजिकल स्पेस है, और यह इन स्थानों के आधारों के स्टिफ़ेल मैनिफ़ोल्ड के बीच होमियोमोर्फिज्म देता है।
दोहरे स्थान का श्रेणीबद्ध और बीजगणितीय निर्माण
वेक्टर स्पेस (मॉड्यूल (गणित)) के दोहरे स्थान को पेश करने का दूसरा तरीका इसे श्रेणीबद्ध अर्थ में पेश करना है। ऐसा करने के लिए, चलो रिंग के ऊपर परिभाषित मॉड्यूल बनें (वह है, श्रेणी में वस्तु है ). फिर हम इस प्रकार दोहरे स्थान को परिभाषित करते हैं , निरूपित , होना , मॉड्यूल सभी का गठन किया -रैखिक मॉड्यूल समरूपता से में . ध्यान दें कि हम दोहरे को दोहरे में परिभाषित कर सकते हैं, जिसे दोहरे दोहरे के रूप में जाना जाता है , के रूप में लिखा गया है , और के रूप में परिभाषित किया गया है .
इसलिए दोहरे स्थान के लिए औपचारिक रूप से आधार तैयार करने के लिए, अब हम इस प्रकार अपना दृष्टिकोण उस स्थितियों तक सीमित रखेंगे जहां परिमित-आयामी मुक्त है (बाएं) -मॉड्यूल, कहाँ ता के साथ अंगूठी है. फिर, हम मान लेते हैं कि सेट के लिए आधार है . यहां से, हम क्रोनकर डेल्टा फ़ंक्शन को परिभाषित करते हैं आधार के ऊपर के लिए अगर और अगर . फिर सेट प्रत्येक के साथ रैखिक रूप से स्वतंत्र सेट का वर्णन करता है . तब से परिमित-आयामी है, आधार परिमित प्रमुखता का है. फिर,इस प्रकार सेट का आधार है और स्वतंत्र (सही) है -मापांक होता है|
उदाहरण
निर्देशीय रूप में उदाहरण के रूप में, (कार्तीय तल) के मानक आधार वेक्टर हैं
और उसके द्वितीय स्थान के मानक आधार वेक्टर हैं
त्रिआयामी यूक्लिडीय अंतर्वास्त्र में, दिए गए आधार , के लिए, द्विपक्षीय (द्वित्वीय) आधार निम्नलिखित सूत्रों द्वारा प्राप्त किया जा सकता है:
यहाँ T स्थानान्तरण को दर्शाता है और
यह आधार वेक्टर और द्वारा बनाए गए त्रिपादीय अनुपात के चतुर्भुज के द्वारा बनाए गए परलेलेपाइपेड के आयतन को दर्शाता है।
सामान्यतः, एक सीमित-आयामी वेक्टर स्थान के आधार के द्वित्वीय आधार को निम्न रूप से सीधे निर्धारित किया जा सकता है: दिए गए आधार और संबंधित द्वित्वीय आधार के लिए हम निम्नलिखित मैट्रिक्स बना सकते हैं:
तब द्वित्वीय आधार के परिभाषित गुण का दावा करता है कि
इसलिए द्वित्वीय आधार के लिए मैट्रिक्स की गणना की जा सकती है जैसे कि
यह भी देखें
- पारस्परिक जाली
- मिलर सूचकांक
- जोन अक्ष
टिप्पणियाँ
- ↑ Lebedev, Cloud & Eremeyev 2010, p. 12.
संदर्भ
- Lebedev, Leonid P.; Cloud, Michael J.; Eremeyev, Victor A. (2010). Tensor Analysis With Applications to Mechanics. World Scientific. ISBN 978-981431312-4.
- "Finding the Dual Basis". Stack Exchange. May 27, 2012.