समर्थन (माप सिद्धांत)

From Vigyanwiki
Revision as of 07:49, 7 July 2023 by alpha>Indicwiki (Created page with "गणित में, माप स्थान का समर्थन (कभी-कभी टोपोलॉजिकल समर्थन या स्पेक्ट...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, माप स्थान का समर्थन (कभी-कभी टोपोलॉजिकल समर्थन या स्पेक्ट्रम)। मापने योग्य स्थान टोपोलॉजिकल स्पेस पर अंतरिक्ष में कहां है इसकी एक सटीक धारणा है उपाय रहता है . इसे सबसेट बड़े (बंद सेट) उपसमुच्चय के रूप में परिभाषित किया गया है जिसके लिए सेट (गणित) के प्रत्येक बिंदु के प्रत्येक खुले सेट पड़ोस (गणित) का सकारात्मक माप होता है।

प्रेरणा

ए (गैर-नकारात्मक) उपाय मापने योग्य स्थान पर वास्तव में एक कार्य है इसलिए, समर्थन (गणित) की सामान्य परिभाषा के संदर्भ में, का समर्थन सिग्मा बीजगणित|σ-बीजगणित का एक उपसमुच्चय है

जहां ओवरबार समापन (टोपोलॉजी) को दर्शाता है। हालाँकि, यह परिभाषा कुछ हद तक असंतोषजनक है: हम क्लोजर की धारणा का उपयोग करते हैं, लेकिन हमारे पास इस पर कोई टोपोलॉजी भी नहीं है हम वास्तव में जानना चाहते हैं कि अंतरिक्ष में कहां है पैमाना गैर-शून्य है. दो उदाहरणों पर विचार करें:

  1. लेब्सेग माप असली लाइन पर ऐसा स्पष्ट प्रतीत होता है संपूर्ण वास्तविक रेखा पर रहता है।
  2. एक डिराक उपाय किन्हीं बिंदुओं पर फिर से, अंतर्ज्ञान सुझाव देता है कि उपाय बिंदु पर रहता है और कहीं नहीं.

इन दो उदाहरणों के प्रकाश में, हम अगले भाग में दी गई परिभाषाओं के पक्ष में निम्नलिखित उम्मीदवार परिभाषाओं को अस्वीकार कर सकते हैं:

  1. हम उन बिंदुओं को हटा सकते हैं जहां शून्य है, और शेषफल के लिए सहारा लीजिए यह डिराक माप के लिए काम कर सकता है लेकिन यह निश्चित रूप से काम नहीं करेगा चूँकि किसी भी सिंगलटन का लेबेस्ग माप शून्य है, यह परिभाषा देगी खाली समर्थन.
  2. उपायों के कड़ाई से सकारात्मक माप की धारणा के साथ तुलना करके, हम सकारात्मक माप के पड़ोस के साथ सभी बिंदुओं के सेट का समर्थन ले सकते हैं:
    (या इसका क्लोजर (टोपोलॉजी))। यह भी बहुत सरल है: लेकर सभी बिंदुओं के लिए इससे शून्य माप को छोड़कर प्रत्येक माप का समर्थन संपूर्ण हो जाएगा

हालाँकि, स्थानीय सख्त सकारात्मकता का विचार एक व्यावहारिक परिभाषा से बहुत दूर नहीं है।

परिभाषा

होने देना एक टोपोलॉजिकल स्पेस बनें; होने देना बोरेल बीजगणित को निरूपित करें|बोरेल σ-बीजगणित पर यानी सबसे छोटा सिग्मा बीजगणित जिसमें सभी खुले सेट शामिल हैं होने देना पर एक उपाय हो फिर का समर्थन (या स्पेक्ट्रम)। सभी बिंदुओं के समुच्चय के रूप में परिभाषित किया गया है में जिसके लिए प्रत्येक ओपन सेट नेबरहुड (गणित) का धनात्मक संख्या माप है:

कुछ लेखक उपरोक्त सेट का समापन लेना पसंद करते हैं। हालाँकि, यह आवश्यक नहीं है: नीचे गुण देखें।

समर्थन की समकक्ष परिभाषा सबसे बड़ी है (समावेशन के संबंध में) इस प्रकार कि प्रत्येक खुला सेट जिसके साथ गैर-रिक्त प्रतिच्छेदन हो इसका माप सकारात्मक है, अर्थात सबसे बड़ा ऐसा है कि:


हस्ताक्षरित और जटिल उपाय

इस परिभाषा को हस्ताक्षरित और जटिल उपायों तक बढ़ाया जा सकता है। लगता है कि एक हस्ताक्षरित उपाय है. लिखने के लिए हैन अपघटन प्रमेय का प्रयोग करें

कहाँ दोनों गैर-नकारात्मक उपाय हैं। फिर का सहारा होने के लिए परिभाषित किया गया है
इसी प्रकार, यदि एक जटिल उपाय है, का समर्थन इसे इसके वास्तविक और काल्पनिक भागों के समर्थन के संघ (सेट सिद्धांत) के रूप में परिभाषित किया गया है।

गुण

धारण करता है.

एक नाप पर यह पूर्णतः सकारात्मक है यदि और केवल तभी जब इसे समर्थन प्राप्त हो अगर पूरी तरह से सकारात्मक है और मनमाना है, फिर कोई भी खुला पड़ोस चूँकि यह एक खुला सेट है, इसका माप सकारात्मक है; इस तरह, इसलिए इसके विपरीत, यदि तब प्रत्येक गैर-रिक्त खुले सेट (इसके आंतरिक भाग में किसी बिंदु का खुला पड़ोस, जो समर्थन का एक बिंदु भी है) का सकारात्मक माप होता है; इस तरह, पूर्णतः सकारात्मक है. एक माप का समर्थन बंद सेट में है इसके पूरक के रूप में माप के खुले सेटों का मिलन है सामान्य तौर पर एक गैर-शून्य माप का समर्थन खाली हो सकता है: नीचे दिए गए उदाहरण देखें। हालांकि, यदि एक हॉसडॉर्फ़ स्थान टोपोलॉजिकल स्पेस है और एक रेडॉन माप, एक बोरेल सेट है समर्थन के बाहर माप शून्य है:

यदि इसका विपरीत सत्य है खुला है, लेकिन यह सामान्य रूप से सत्य नहीं है: यदि कोई बिंदु मौजूद है तो यह विफल हो जाता है ऐसा है कि (उदाहरण के लिए लेब्सेग माप)। इस प्रकार, किसी को किसी भी मापने योग्य फ़ंक्शन के लिए समर्थन के बाहर एकीकृत करने की आवश्यकता नहीं है या

एक माप के समर्थन की अवधारणा और हिल्बर्ट स्थान पर एक स्व-सहायक संचालिका | सेल्फ-एडजॉइंट रैखिक ऑपरेटर के स्पेक्ट्रम का आपस में गहरा संबंध है। वास्तव में, यदि लाइन पर एक नियमित बोरेल माप है फिर गुणन संचालिका अपने प्राकृतिक डोमेन पर स्व-संयुक्त है

और इसका स्पेक्ट्रम पहचान फ़ंक्शन की आवश्यक सीमा से मेल खाता है जो वास्तव में समर्थन है [1]


उदाहरण

लेब्सग माप

लेब्सगेग माप के मामले में असली लाइन पर एक मनमाना बिंदु पर विचार करें फिर कोई खुला पड़ोस का कुछ खुला अंतराल होना चाहिए (गणित) कुछ के लिए इस अंतराल में लेब्सेग माप है इसलिए तब से मनमाना था,


डिराक माप

डिराक माप के मामले में होने देना और दो मामलों पर विचार करें:

  1. अगर फिर हर खुला पड़ोस का रोकना इसलिए
  2. दूसरी ओर, यदि तब वहां एक पर्याप्त छोटी खुली गेंद मौजूद होती है आस-पास जिसमें शामिल नहीं है इसलिए

हम यह निष्कर्ष निकालते हैं सिंगलटन (गणित) सेट का समापन है जो है अपने आप।

वास्तव में, एक उपाय वास्तविक रेखा पर एक डिराक माप है कुछ बिंदु के लिए यदि और केवल यदि का समर्थन सिंगलटन सेट है नतीजतन, वास्तविक रेखा पर डिराक माप शून्य विचरण वाला अद्वितीय माप है (बशर्ते कि माप में बिल्कुल भी विचरण हो)।

एक समान वितरण

उपाय पर विचार करें असली लाइन पर द्वारा परिभाषित

यानी खुले अंतराल पर एक समान वितरण (निरंतर) डिराक माप उदाहरण के समान तर्क यह दर्शाता है ध्यान दें कि सीमा बिंदु 0 और 1 समर्थन में स्थित हैं: 0 (या 1) वाले किसी भी खुले सेट में 0 (या 1) के बारे में एक खुला अंतराल होता है, जिसे प्रतिच्छेद करना चाहिए और इसलिए सकारात्मक होना चाहिए -उपाय।

एक गैर-तुच्छ उपाय जिसका समर्थन खाली है

खुले अंतरालों द्वारा उत्पन्न टोपोलॉजी के साथ सभी गणनीय अध्यादेशों का स्थान स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्थान है। वह माप (ड्युडोने माप) जो एक असीमित बंद उपसमुच्चय वाले बोरेल सेटों को माप 1 प्रदान करता है और अन्य बोरेल सेटों को 0 प्रदान करता है, एक बोरेल संभाव्यता माप है जिसका समर्थन खाली है।

===एक गैर-तुच्छ माप जिसका समर्थन शून्य === है

एक कॉम्पैक्ट हॉसडॉर्फ स्थान पर एक गैर-शून्य माप का समर्थन हमेशा गैर-रिक्त होता है, लेकिन इसमें माप हो सकता है इसका एक उदाहरण पहले बेशुमार क्रमसूचक को जोड़कर दिया गया है पिछले उदाहरण के अनुसार: माप का समर्थन एकल बिंदु है जिसका माप है


संदर्भ

  1. Mathematical methods in Quantum Mechanics with applications to Schrödinger Operators
  • Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. ETH Zürich, Birkhäuser Verlag, Basel. ISBN 3-7643-2428-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. p. xii+276. ISBN 0-8218-3889-X. MR2169627 (See chapter 2, section 2.)
  • Teschl, Gerald (2009). Mathematical methods in Quantum Mechanics with applications to Schrödinger Operators. AMS.(See chapter 3, section 2)