न्यूनतम-उच्चतर-परिबद्ध गुण

From Vigyanwiki
Revision as of 19:52, 8 July 2023 by alpha>Sweta
प्रत्येक गैर-रिक्त उपसमुच्चय वास्तविक संख्याओं में से जो ऊपर से घिरा है उसकी ऊपरी सीमा सबसे कम है।

गणित में, न्यूनतम-ऊपरी-परिबद्ध गुण (कभी-कभी पूर्णता या सर्वोच्च गुण या एल.यू.बी. गुण कहा जाता है)[1] वास्तविक संख्याओं की एक मौलिक गुण है। अधिक सामान्यतः आंशिक रूप से क्रमित किए गए समुच्चय X में सबसे कम-ऊपरी-सीमित गुण होती है यदि ऊपरी सीमित के साथ X के प्रत्येक गैर-रिक्त उपसमुच्चय में X में न्यूनतम ऊपरी सीमित (सर्वोच्च) होता है। प्रत्येक (आंशिक रूप से) क्रमित किए गए समुच्चय में न्यूनतम ऊपरी सीमा वाली गुण नहीं होती है। उदाहरण के लिए, अपने प्राकृतिक क्रम के साथ सभी परिमेय संख्याओं के समुच्चय Q में न्यूनतम ऊपरी सीमा वाली गुण नहीं होती है।

न्यूनतम-ऊपरी-सीमा वाली गुण वास्तविक संख्याओं के लिए पूर्णता सिद्धांत का एक रूप है, और कभी-कभी इसे डेडेकाइंड पूर्णता के रूप में जाना जाता है।[2] इसका उपयोग वास्तविक विश्लेषण के कई मूलभूत परिणामों को साबित करने के लिए किया जा सकता है, जैसे कि मध्यवर्ती मूल्य प्रमेय, बोल्ज़ानो-वेइरस्ट्रैस प्रमेय, अतिशय मूल्य प्रमेय और हेन-बोरेल प्रमेय। इसे सामान्यतः वास्तविक संख्याओं के सिंथेटिक निर्माण में एक स्वयंसिद्ध के रूप में लिया जाता है, और यह डेडेकाइंड कट्स का उपयोग करके वास्तविक संख्याओं के निर्माण से भी घनिष्ठ रूप से संबंधित है।

क्रमित सिद्धांत में, इस गुण को किसी आंशिक रूप से क्रमित समुच्चय के लिए पूर्णता की धारणा के लिए सामान्यीकृत किया जा सकता है। रैखिक रूप से क्रमित समुच्चय जो सघन होता है और जिसमें सबसे कम ऊपरी सीमा वाला गुण होता है, उसे रैखिक सातत्य कहा जाता है।

गुण का विवरण

वास्तविक संख्याओं के लिए कथन

मान लीजिए S वास्तविक संख्याओं का एक गैर-रिक्त समुच्चय है।

  • वास्तविक संख्या x को S के लिए ऊपरी सीमा कहा जाता है यदि xs सभी sS के लिए है।
  • वास्तविक संख्या x, S के लिए न्यूनतम ऊपरी सीमा (या सर्वोच्च) है यदि x S के लिए ऊपरी सीमा है और S की प्रत्येक ऊपरी सीमा y के लिए xy है।

न्यूनतम-ऊपरी-सीमा वाली गुण बताती है कि वास्तविक संख्याओं का कोई भी गैर-रिक्त समुच्चय जिसकी ऊपरी सीमा है, वास्तविक संख्याओं में न्यूनतम ऊपरी सीमा होनी चाहिए।

क्रमित समुच्चयों का सामान्यीकरण

लाल: समुच्चय . नीला: इसकी ऊपरी सीमा का समुच्चय .

अधिक सामान्यतः, कोई आंशिक रूप से क्रम किए गए सेट इस स्तिथि में, हम कहते हैं कि X के पास सबसे कम ऊपरी सीमा वाली गुण है यदि ऊपरी सीमा वाले X के प्रत्येक गैर-रिक्त उपसमुच्चय में X में सबसे कम ऊपरी सीमा होती है।

उदाहरण के लिए, समुच्चय Q तर्कसंगत संख्याओं में सामान्य क्रम के तहत न्यूनतम-ऊपरी-सीमा वाली गुण नहीं होती है। उदाहरण के लिए, समुच्चय

Q में ऊपरी सीमा होती है, लेकिन Q में न्यूनतम ऊपरी सीमा नहीं होती है (क्योंकि दो का वर्गमूल अपरिमेय होता है)। डेडेकाइंड कट्स का उपयोग करके वास्तविक संख्याओं का निर्माण इस विफलता का लाभ उठाते हुए अपरिमेय संख्याओं को परिमेय के कुछ उपसमुच्चय की सबसे कम ऊपरी सीमा के रूप में परिभाषित करता है।

सिद्ध

तार्किक स्थिति

न्यूनतम-ऊपरी-सीमा वाली गुण पूर्णता स्वयंसिद्ध के अन्य रूपों के बराबर है, जैसे कॉची अनुक्रमों का अभिसरण या नेस्टेड अंतराल प्रमेय। गुण की तार्किक स्थिति उपयोग की गई वास्तविक संख्याओं के निर्माण पर निर्भर करती है: सिंथेटिक दृष्टिकोण में, गुण को सामान्यतः वास्तविक संख्याओं के लिए एक सिद्धांत के रूप में लिया जाता है (न्यूनतम ऊपरी सीमा सिद्धांत देखें); रचनात्मक दृष्टिकोण में, गुण को एक प्रमेय के रूप में सिद्ध किया जाना चाहिए, या तो सीधे निर्माण से या किसी अन्य प्रकार की पूर्णता के परिणामस्वरूप हैं।

कॉची अनुक्रमों का उपयोग करके प्रमाण

इस धारणा का उपयोग करके न्यूनतम-ऊपरी-सीमा वाली गुण को साबित करना संभव है कि वास्तविक संख्याओं का प्रत्येक कॉची अनुक्रम अभिसरण करता है। मान लीजिये S वास्तविक संख्याओं का अरिक्त समुच्चय बनें। अगर S में बिल्कुल अवयव है, तो इसका एकमात्र अवयव न्यूनतम ऊपरी सीमा है। तो विचार करें S एक से अधिक अवयवों के साथ, और मान लीजिए कि S की एक ऊपरी सीमा है B1. तब से S शून्य नहीं है और इसमें एक से अधिक अवयव हैं, वास्तविक संख्या उपस्थित है A1 इसके लिए कोई ऊपरी सीमा नहीं है S. अनुक्रमों को परिभाषित करें A1, A2, A3, ... और B1, B2, B3, ... पुनरावर्ती रूप से इस प्रकार है:

  1. जाँच करें (An + Bn) ⁄ 2 के लिए ऊपरी सीमा है S.
  2. यदि यह है, मान लीजिये An+1 = An और मान लीजिये Bn+1 = (An + Bn) ⁄ 2.
  3. अन्यथा s में एक अवयव S अवश्य होना चाहिए ताकि s>(An + Bn) ⁄ 2 मान लीजिए An+1 = s और मान लीजिए Bn+1 = Bn.

तब A1A2A3 ≤ ⋯ ≤ B3B2B1 और |AnBn| → 0 जैसा n → ∞. इससे यह निष्कर्ष निकलता है कि दोनों अनुक्रम कॉची हैं और उनकी सीमा समान है L, जिसके लिए न्यूनतम ऊपरी सीमा S होनी चाहिए।

अनुप्रयोग

की सबसे कम-ऊपरी-सीमा वाली गुण R का उपयोग वास्तविक विश्लेषण में कई मुख्य मूलभूत प्रमेयों को सिद्ध करने के लिए किया जा सकता है।

मध्यवर्ती मूल्य प्रमेय

मान लीजिये f : [a, b] → R सतत कार्य हो, और मान लीजिए f (a) < 0 और f (b) > 0. इस स्तिथि में, मध्यवर्ती मूल्य प्रमेय बताता है कि f अंतराल में किसी फ़ंक्शन का रूट होना चाहिए [a, b]. इस प्रमेय को समुच्चय पर विचार करके सिद्ध किया जा सकता है

S  =  {s ∈ [a, b]  :  f (x) < 0 for all xs} .

वह है, S का प्रारंभिक खंड है [a, b] जो नकारात्मक मान लेता है f. तब b के लिए ऊपरी सीमा है S, और सबसे छोटी ऊपरी सीमा का मूल f होना चाहिए।

बोलजानो-वीयरस्ट्रैस प्रमेय

रिक्तबोल्ज़ानो-वीयरस्ट्रैस प्रमेय के लिए R बताता है कि प्रत्येक अनुक्रम xn सवृत अंतराल में वास्तविक संख्याओं का [a, b] अभिसरण अनुवर्ती होना चाहिए। इस प्रमेय को समुच्चय पर विचार करके सिद्ध किया जा सकता है

S  =  {s ∈ [a, b]  :  sxn for infinitely many n}

स्पष्ट रूप से, , और S रिक्त नहीं है।

इसके साथ ही, b के लिए ऊपरी सीमा S है , इसलिए S की न्यूनतम ऊपरी सीमा c है।

तब c अनुक्रम का सीमा बिंदु xn होना चाहिए , और यह उसका अनुसरण करता है xn में अनुवर्ती c है जो अभिसरण करता है।

अतिशय मान प्रमेय

मान लीजिये f : [a, b] → R सतत कार्य हो और चलो M = sup f ([a, b]), जहाँ M = ∞ अगर f ([a, b]) की कोई ऊपरी सीमा नहीं है। अतिशय मूल्य प्रमेय यह बताता है M परिमित है और f (c) = M कुछ के लिए c ∈ [a, b]। इसे समुच्चय पर विचार करके सिद्ध किया जा सकता है

S  =  {s ∈ [a, b]  :  sup f ([s, b]) = M} .

की परिभाषा के अनुसार M, aS, और b अपनी परिभाषा के अनुसार, S से घिरा है।

अगर c की सबसे निचली ऊपरी सीमा है S, तो यह निरंतरता से इस प्रकार है कि f (c) = M.

हेन-बोरेल प्रमेय

मान लीजिए कि [a, b] R में एक बंद अंतराल है, और मान लें कि {Uα} विवृत समुच्चयों का एक संग्रह है जो [a, b] को आच्छादित करता है। फिर हेइन-बोरेल प्रमेय बताता है कि {Uα} का कुछ सीमित उपसंग्रह [a, b] को भी आच्छादित करता है। इस कथन को समुच्चय पर विचार करके सिद्ध किया जा सकता है

S  =  {s ∈ [a, b]  :  [a, s] सीमित रूप से अनेक लोगों द्वारा आच्छादित किया जा सकता है Uα} .

समुच्चय S में स्पष्ट रूप से a सम्मिलित है, और निर्माण द्वारा b से घिरा है। न्यूनतम-ऊपरी-परिबद्ध गुण द्वारा, S की न्यूनतम ऊपरी सीमा c ∈ [a, b] है। इसलिए, c स्वयं कुछ खुले सेट Uα का अवयव है, और यह c < b के लिए अनुसरण करता है कि [a, c + δ] को कुछ पर्याप्त छोटे δ > 0 के लिए सीमित रूप से कई Uα द्वारा आच्छादित किया जा सकता है। इससे सिद्ध होता है कि c + δS और c,S के लिए ऊपरी सीमा नहीं है। परिणामस्वरूप, c = b

इतिहास

न्यूनतम-ऊपरी-सीमा वाली गुण के महत्व को सबसे पहले बर्नार्ड बोलजानो ने अपने 1817 के पेपर में प्रमेय का विशुद्ध रूप से विश्लेषणात्मक प्रमाण माना था कि विपरीत परिणाम देने वाले प्रत्येक दो मूल्यों के बीच, समीकरण की न्यूनतम वास्तविक वर्गमूल होती है।[3]

यह भी देखें

टिप्पणियाँ

  1. Bartle and Sherbert (2011) define the "completeness property" and say that it is also called the "supremum property". (p. 39)
  2. Willard says that an ordered space "X is Dedekind complete if every subset of X having an upper bound has a least upper bound." (pp. 124-5, Problem 17E.)
  3. Raman-Sundström, Manya (August–September 2015). "सघनता का एक शैक्षणिक इतिहास". American Mathematical Monthly. 122 (7): 619–635. arXiv:1006.4131. doi:10.4169/amer.math.monthly.122.7.619. JSTOR 10.4169/amer.math.monthly.122.7.619. S2CID 119936587.

संदर्भ