विभाजन क्षेत्र

From Vigyanwiki
Revision as of 12:41, 13 July 2023 by alpha>Sugatha (Sugatha moved page बँटवारा क्षेत्र to विभाजन क्षेत्र without leaving a redirect)

अमूर्त बीजगणित में, किसी क्षेत्र में गुणांक वाले बहुपद का विभाजन क्षेत्र उस क्षेत्र का सबसे अल्प क्षेत्र विस्तार होता है, जिस पर बहुपद विभाजित होता है, अर्थात, रैखिक कारकों में विघटित होता है।

परिभाषा

क्षेत्र K पर एक बहुपद p(X) का विभाजन क्षेत्र K का क्षेत्र विस्तार L है, जिस पर p रैखिक कारकों में गुणनखंड करता है।

जहाँ और प्रत्येक i के लिए हमारे पास विस्तार L तब K के ऊपर न्यूनतम डिग्री का विस्तार है जिसमें p विभाजित होता है। यह दिखाया जा सकता है कि ऐसे विभाजन क्षेत्र उपस्थित हैं और आइसोमोर्फिज़्म तक अद्वितीय हैं। उस समरूपता में स्वतंत्रता की मात्रा को p के गैलोइस समूह के रूप में जाना जाता है (यदि हम मानते हैं कि यह अलग करने योग्य है)।

गुण

विस्तार L जो K के ऊपर बहुपद p(X) के समुच्चय के लिए एक विभाजक क्षेत्र है, K का सामान्य विस्तार कहलाता है।

बीजगणितीय रूप से बंद क्षेत्र A को देखते हुए, जिसमें K सम्मिलित है, K और A के बीच p का एक अद्वितीय विभाजन क्षेत्र L है, जो p की मूल द्वारा उत्पन्न होता है। यदि K सम्मिश्र संख्याओं का एक उपक्षेत्र है, तो अस्तित्व तत्काल है। दूसरी ओर, बीजीय समापन का अस्तित्व, सामान्य तौर पर, विभाजन क्षेत्र परिणाम से 'सीमा तक जाने' से सिद्ध होता है, इसलिए परिपत्र तर्क से बचने के लिए एक स्वतंत्र प्रमाण की आवश्यकता होती है।

K के अलग करने योग्य विस्तार K' को देखते हुए, K' का गैलोज़ क्लोजर L एक प्रकार का विभाजन क्षेत्र है, और K का एक गैलोज़ विस्तार भी है जिसमें K' सम्मिलित है जो कि एक स्पष्ट अर्थ में न्यूनतम है। इस तरह के गैलोइस क्लोजर में K के ऊपर सभी बहुपद p के लिए एक विभाजन क्षेत्र होना चाहिए जो कि K' के अवयवों के K के ऊपर न्यूनतम बहुपद हैं।

विभाजन क्षेत्रों का निर्माण

प्रेरणा

प्राचीन यूनानियों के समय से ही बहुपदों के फलन का मूल खोजना महत्वपूर्ण समस्या रही है। हालाँकि, कुछ बहुपद, जैसे x2 + 1 ऊपर R, वास्तविक संख्याओं का कोई मूल नहीं होता। ऐसे बहुपद के लिए विभाजन क्षेत्र का निर्माण करके कोई भी नए क्षेत्र में बहुपद की मूल पा सकता है।

निर्माण

मान लीजिए कि F क्षेत्र है और p(X) एक बहुपद n की घात वाले बहुपद वलय F[X] में बहुपद है। K के निर्माण की सामान्य प्रक्रिया, F पर p(X) का विभाजन क्षेत्र, क्षेत्र की श्रृंखला का निर्माण करना है। ऐसा कि Ki, Ki −1 का विस्तार है जिसमें p(X) का एक नया मूल है। चूंकि p(X) में अधिकतम n मूल हैं इसलिए निर्माण के लिए अधिकतम n एक्सटेंशन की आवश्यकता होगी। Ki के निर्माण के चरण निम्नानुसार दिए गए हैं:

  • Ki के ऊपर p(X) को अप्रासंगिक कारकों में गुणनखंडित करें।
  • कोई भी अरैखिक अलघुकरणीय कारक f(X) = fi(X) चुनें।
  • Ki के क्षेत्र विस्तारKi +1 को भागफल वलय Ki +1 = Ki[X] / (f(X)) के रूप में बनाएं, जहां (f(X)) f(X)) द्वारा उत्पन्न Ki[X] में आदर्श को दर्शाता है।
  • Ki +1 के लिए प्रक्रिया को तब तक दोहराएँ जब तक कि p(X) पूरी तरह से गुणनखंड न हो जाए।

भागफल निर्माण में उपयोग किए जाने वाले अपरिवर्तनीय कारक fi(X) को मनमाने ढंग से चुना जा सकता है। हालाँकि कारकों के विभिन्न विकल्पों के कारण अलग-अलग उपक्षेत्र अनुक्रम हो सकते हैं, परिणामी विभाजन क्षेत्र समरूपी होंगे।

चूँकि f(X) अप्रासंगिक है, (f(X)) Ki[X] का अधिकतम आदर्श है और Ki[X] / (f(X)) वास्तव में क्षेत्र है। इसके अलावा, अगर हम फिर वलय को उसके भागफल पर

इसलिए π(X) f(X) और p(X) का मूल है।

एकल विस्तार की डिग्री इरेड्यूसिबल फ़ैक्टर f(X) की डिग्री के बराबर है। विस्तार की डिग्री [K : F] द्वारा दी गई है और अधिकतम n! है।

क्षेत्र Ki[X]/(f(X))

जैसा कि ऊपर बताया गया है, भागफल वलय Ki +1 = Ki[X]/(f(X)) क्षेत्र है जब f(X) अप्रासंगिक है। इसके तत्त्व रूप के हैं

जहां cj Ki और α = π(X) में हैं। (यदि कोई Ki +1 को Ki के ऊपर सदिश समष्टि मानता है तो 0 ≤ jn−1 के लिए घात αj आधार बनाता है।)

Ki +1 के अवयवों को n से कम घात वाले α में बहुपद माना जा सकता है। Ki +1 में जोड़ बहुपद जोड़ के नियमों द्वारा दिया जाता है और गुणन बहुपद गुणन मॉड्यूल f(X) द्वारा दिया जाता है। अर्थात्, Ki +1 में g(α) और h(α) के लिए उनका गुणनफल g(α)h(α) = r(α) है जहां r(X) g(X)h(X) का शेषफल है जब Ki[X] में f(X) से विभाजित किया जाता है।

शेष r(X) की गणना बहुपदों के लंबे विभाजन के माध्यम से की जा सकती है, हालाँकि एक सीधा कमी नियम भी है जिसका उपयोग सीधे r(α) = g(α)h(α) की गणना करने के लिए किया जा सकता है। मान लीजिये

बहुपद क्षेत्र के ऊपर है इसलिए व्यापकता की हानि के बिना कोई f(X) को एकात्मक बहुपद मान सकता है। अब α, f(X) का मूल है, इसलिए

यदि उत्पाद g(α)h(α) का पद αm है के साथ mn इसे इस प्रकार कम किया जा सकता है:

.

कमी नियम के उदाहरण के रूप में, तर्कसंगत गुणांक वाले बहुपदों की अंगूठी, Ki = Q[X] लें, और f(X) = X 7 − 2 लें। मान लीजिए और h(α) = α 3 +1 Q[X]/(X 7 − 2 के दो अवयव हैं। f(X) द्वारा दिया गया कमी नियम α7 = 2 हैै।

उदाहरण

सम्मिश्र संख्याएँ

बहुपद वलय R[x] और अपरिवर्तनीय बहुपद पर विचार करें x2 + 1. भागफल वलय R[x] / (x2 + 1) सर्वांगसमता संबंध द्वारा दिया गया है x2 ≡ −1. परिणामस्वरूप, के अवयव (या समतुल्य वर्ग)। R[x] / (x2 + 1) रूप के हैं a + bx जहां ए और बी 'आर' से संबंधित हैं। इसे देखने के लिए, उस पर ध्यान दें x2 ≡ −1 यह इस प्रकार है कि x3 ≡ −x, x4 ≡ 1, x5x, वगैरह।; और इसलिए, उदाहरण के लिए p + qx + rx2 + sx3p + qx + r(−1) + s(−x) = (pr) + (qs)x.

जोड़ और गुणन संचालन पहले सामान्य बहुपद जोड़ और गुणन का उपयोग करके दिया जाता है, लेकिन फिर मॉड्यूलो को कम करके दिया जाता है x2 + 1, यानी इस तथ्य का उपयोग करना x2 ≡ −1, x3 ≡ −x, x4 ≡ 1, x5x, आदि। इस प्रकार:

अगर हम पहचान लें a + bx (ए,बी) के साथ तो हम देखते हैं कि जोड़ और गुणा दिए गए हैं

हम दावा करते हैं कि, क्षेत्र के रूप में, भागफल वलय R[x] / (x2 + 1) सम्मिश्र संख्याओं का समरूपी है, C. सामान्य सम्मिश्र संख्या इस प्रकार की होती है a + bi, जहां ए और बी वास्तविक संख्याएं हैं और i2 = −1.जोड़ और गुणा द्वारा दिया जाता है

अगर हम पहचान लें a + bi (ए, बी) के साथ तो हम देखते हैं कि जोड़ और गुणा दिए गए हैं

पिछली गणनाओं से पता चलता है कि जोड़ और गुणा एक ही तरह से व्यवहार करते हैं R[x] / (x2 + 1) और c. वास्तव में, हम देखते हैं कि बीच का मानचित्र R[x] / (x2 + 1) और c द्वारा दिया गया a + bxa + biजोड़ और गुणन के संबंध में एक समरूपता है। यह भी स्पष्ट है कि मानचित्र a + bxa + bi विशेषण और विशेषण दोनों है; मतलब है कि a + bxa + bi विशेषण समरूपता है, अर्थात, वलय समरूपता। जैसा कि दावा किया गया है, यह इस प्रकार है: R[x] / (x2 + 1) ≅ C.

1847 में, ऑगस्टिन-लुई कॉची ने जटिल संख्याओं को परिभाषित करने के लिए इस दृष्टिकोण का उपयोग किया।[1]

घन उदाहरण

होने देना K तर्कसंगत संख्या क्षेत्र बनें Q और p(x) = x3 − 2. की प्रत्येक मूल p बराबर है 32एकता का घनमूल गुना। इसलिए, यदि हम एकता के घनमूलों को इससे निरूपित करते हैं

कोई भी क्षेत्र जिसमें दो अलग-अलग मूल हों p में एकता के दो अलग-अलग घनमूलों के बीच का भागफल सम्मिलित होगा। ऐसा भागफल एकता का आदिम मूल है, एकता का घनमूल - दोनों में से एक है या . यह एक विभाजन क्षेत्र का अनुसरण करता है L का p में ω2 होगा, साथ ही 2 का वास्तविक घनमूल; अलघुकरणीय, का कोई भी विस्तार Q इन अवयवों से युक्त सभी मूल सम्मिलित हैं p. इस प्रकार

ध्यान दें कि पिछले भाग में उल्लिखित निर्माण प्रक्रिया को इस उदाहरण में लागू करने से प्रारम्भ होती है और क्षेत्र का निर्माण करता है यह क्षेत्र विभाजन क्षेत्र नहीं है, बल्कि इसमें एक (कोई भी) रूट सम्मिलित है। हालाँकि, बहुपद पर अप्रासंगिक बहुपद नहीं है और वास्तव में:

ध्यान दें कि यह अनिश्चित (चर) नहीं है, और वास्तव में इसका अवयव है . अब, प्रक्रिया को जारी रखते हुए, हम प्राप्त करते हैं जो वास्तव में विभाजन क्षेत्र है और इसके द्वारा फैला हुआ है -आधार . ध्यान दें कि अगर हम इसकी तुलना करें ऊपर से हम पहचान और सकते हैं।

अन्य उदाहरण

  • Fp पर xqx का विभाजन क्षेत्र, q = pn के लिए अद्वितीय परिमित क्षेत् रFq है।[2] कभी-कभी इस क्षेत्र को GF(q) द्वारा निरूपित किया जाता है।
  • F7 के ऊपर x2 + 1 का विभाजन क्षेत्र F49 है; बहुपद का F7 में कोई मूल नहीं है, यानी, −1 वहां वर्ग नहीं है, क्योंकि 7, 1 मॉड्यूल 4 के सर्वांगसम नहीं है।[3]
  • F7 पर x2 − 1 का विभाजन क्षेत्र F7 है क्योंकि x2 − 1 = (x + 1)(x − 1) पहले से ही रैखिक कारकों में विभाजित है।
  • हम F2 पर f(x) = x3 + x + 1 के विभाजन क्षेत्र की गणना करते हैं। यह सत्यापित करना आसान है कि f(x) की F2 में कोई जड़ नहीं है, इसलिए F2[x] में f(x) अप्रासंगिक है। r = x + (f(x)) में F2[x]/(f(x)) डालें ताकि F2(r ) क्षेत्र हो और x3 + x + 1 = (x + r)(x2 + ax + b) F2(r )[x] में। ध्यान दें कि हम − के लिए + लिख सकते हैं क्योंकि विशेषता दो है। गुणांकों की तुलना करने से पता चलता है कि a = r और b = 1 + r 2. F2(r ) के अवयवों को c + dr + er 2 के रूप में सूचीबद्ध किया जा सकता है, जहां c, d, e F2 में हैं। आठ अवयव हैं: 0, 1, r, 1 + r, r 2, 1 + r 2, r + r 2 और 1 + r + r 2 इन्हें x2 + rx + 1 + r 2 में प्रतिस्थापित करने पर हम (r) पर पहुंचते हैं (r 2)2 + r(r 2) + 1 + r 2 = r 4 + r 3 + 1 + r 2 = 0 इसलिए x3 + x + 1 = (x + r)(x + r 2)(x + (r + r 2)) में r के लिए; F2[x]/(f(x)); E = F2(r ) पर x3 + x + 1 का विभाजन क्षेत्र है।

टिप्पणियाँ

  1. Cauchy, Augustin-Louis (1847), "Mémoire sur la théorie des équivalences algébriques, substituée à la théorie des imaginaires", Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (in français), 24: 1120–1130
  2. Serre. अंकगणित में एक पाठ्यक्रम.
  3. Instead of applying this characterization of odd prime moduli for which −1 is a square, one could just check that the set of squares in F7 is the set of classes of 0, 1, 4, and 2, which does not include the class of −1 ≡ 6.

संदर्भ