Revision as of 12:00, 4 July 2023 by alpha>Indicwiki(Created page with "{{Short description|Series whose partial sums eventually only have a fixed number of terms after cancellation}} {{Ref improve|date=March 2021}} गणित में, टे...")
परिणामस्वरूप आंशिक योग में केवल दो पद होते हैं रद्द करने के बाद.[1][2] प्रत्येक पद के एक भाग को अगले पद के एक भाग के साथ रद्द करने की रद्दीकरण तकनीक को अंतर की विधि के रूप में जाना जाता है।
उदाहरण के लिए, श्रृंखला
(सर्वनाम संख्याओं के गुणक व्युत्क्रमों की श्रृंखला) को इस प्रकार सरल किया गया है
टेलीस्कोपिंग श्रृंखला के योग या आंशिक योग के सूत्र का प्रारंभिक विवरण 1644 में इवांजेलिस्टा टोरिसेली के काम, डी डायमेंशन पैराबोले में पाया जा सकता है।[3]
शक्तियों की एक दूरबीन श्रृंखला। योग चिह्न में नोट करें, , सूचकांक n 1 से m तक जाता है। इस तथ्य से परे n और m के बीच कोई संबंध नहीं है कि दोनों प्राकृतिक संख्याएँ हैं।
टेलीस्कोपिंग योग (गणित) परिमित योग हैं जिसमें लगातार पदों के जोड़े एक दूसरे को रद्द कर देते हैं, केवल प्रारंभिक और अंतिम पद बचते हैं।[4]
होने देना संख्याओं का एक क्रम हो. तब,
अगर
टेलीस्कोपिंग उत्पाद (गणित) परिमित उत्पाद हैं जिसमें लगातार पद हर को अंश के साथ रद्द कर देते हैं, केवल प्रारंभिक और अंतिम पद छोड़ते हैं।
होने देना संख्याओं का एक क्रम हो. तब,
अगर
अधिक उदाहरण
कई त्रिकोणमितीय फ़ंक्शन भी प्रतिनिधित्व को एक अंतर के रूप में स्वीकार करते हैं, जो लगातार पदों के बीच टेलीस्कोपिक रद्दीकरण की अनुमति देता है।
फॉर्म के कुछ योग
जहाँ f और g बहुपद फलन हैं जिनके भागफल को आंशिक भिन्नों में विभाजित किया जा सकता है, इस विधि द्वारा योग स्वीकार करने में विफल रहेंगे। विशेष रूप से, एक के पास है
समस्या यह है कि शर्तें रद्द नहीं होतीं.
मान लीजिए k एक धनात्मक पूर्णांक है। तब
जहां एचk kth हार्मोनिक संख्या है. बाद की सभी शर्तें 1/(k − 1) रद्द करना।
चलो k,m के साथ k m धनात्मक पूर्णांक हो. तब
संभाव्यता सिद्धांत में एक अनुप्रयोग
संभाव्यता सिद्धांत में, एक पॉइसन प्रक्रिया एक स्टोकेस्टिक प्रक्रिया है जिसमें सबसे सरल मामले में यादृच्छिक समय पर घटनाएं शामिल होती हैं, स्मृतिहीनता घातीय वितरण वाली अगली घटना तक प्रतीक्षा समय, और किसी भी समय अंतराल में घटनाओं की संख्या जिसमें पॉइसन वितरण होता है जिसकी अपेक्षित मान समय अंतराल की लंबाई के समानुपाती होता है। चलो एक्सt समय t से पहले घटनाओं की संख्या हो, और मान लीजिए Tx xवीं घटना तक प्रतीक्षा समय हो। हम यादृच्छिक चर T की संभाव्यता घनत्व फ़ंक्शन की तलाश करते हैंx. हम पॉइसन वितरण के लिए संभाव्यता द्रव्यमान फ़ंक्शन का उपयोग करते हैं, जो हमें यह बताता है
जहां λ लंबाई 1 के किसी भी समय अंतराल में घटनाओं की औसत संख्या है। देखें कि घटना {Xt ≥ x} घटना {T के समान हैx ≤ t}, और इस प्रकार उनकी समान संभावना है। सहज रूप से, यदि कुछ घटित होता है तो कम से कम समय से पहले कई बार , हमें ज़्यादा से ज़्यादा इंतज़ार करना होगा के लिए घटना। इसलिए हम जिस घनत्व फलन की तलाश कर रहे हैं वह है
दूरबीनों का योग, जा रहा है
समान अवधारणाएँ
टेलीस्कोपिंग उत्पाद
एक टेलीस्कोपिंग उत्पाद एक सीमित उत्पाद (या एक अनंत उत्पाद का आंशिक उत्पाद) है जिसे भागफल की विधि द्वारा अंततः केवल कारकों की एक सीमित संख्या में रद्द किया जा सकता है।[5][6]
उदाहरण के लिए, अनंत उत्पाद[5]
के रूप में सरलीकृत करता है
अन्य अनुप्रयोग
अन्य अनुप्रयोगों के लिए, देखें:
ग्रांडी की श्रृंखला;
प्रमाण कि अभाज्य संख्याओं के व्युत्क्रमों का योग अलग-अलग होता है, जहां एक प्रमाण दूरबीन योग का उपयोग करता है;
कैलकुलस का मौलिक प्रमेय, टेलीस्कोपिंग श्रृंखला का एक सतत एनालॉग;
आदेश आँकड़ा, जहां एक दूरबीन योग एक संभाव्यता घनत्व फ़ंक्शन की व्युत्पत्ति में होता है;