गणित में, टेलीस्कोपिंग श्रृंखला एक श्रृंखला है जिसका सामान्य पद , के रूप का, अर्थात अनुक्रम के दो लगातार पदों का अंतर होता है।
परिणामस्वरूप, निरस्तीकरण के बाद आंशिक योग में के केवल दो पद शामिल होते हैं।[1][2] प्रत्येक पद के एक भाग को अगले पद के भाग के साथ निरसित करने की निरस्तीकरण तकनीक को अंतर की विधि के रूप में जाना जाता है।
उदाहरण के लिए, श्रृंखला
(उच्चारण संख्याओं के व्युत्क्रमों की श्रृंखला) को इस प्रकार सरल किया गया है
टेलिस्कोपिंग श्रृंखला के योग या आंशिक योग के सूत्र का प्रारंभिक विवरण 1644 में इवांजेलिस्टा टोर्रिकेली के काम, डी डायमेंशन पैराबोले में पाया जा सकता है।[3]
शक्तियों की एक दूरबीन श्रृंखला। योग चिह्न में नोट करें, , सूचकांक n 1 से m तक जाता है। इस तथ्य से परे n और m के बीच कोई संबंध नहीं है कि दोनों प्राकृतिक संख्याएँ हैं।
टेलीस्कोपिंग योग परिमित योग होते हैं जिनमें क्रमागत पदों के जोड़े एक दूसरे को निरसित कर देते हैं, केवल प्रारंभिक और अंतिम पद बचते हैं।[4]
होने देना संख्याओं का एक क्रम हो. तब,
यदि
टेलीस्कोपिंग गुणनफल परिमित गुणनफल हैं जिनमें लगातार पद अंश के साथ हर को निरसित कर देते हैं, केवल प्रारंभिक और अंतिम पद छोड़ते हैं।
मान लीजिये संख्याओं का एक क्रम है। तब,
यदि
अधिक उदाहरण
कई त्रिकोणमितीय फलन भी प्रतिनिधित्व को एक अंतर के रूप में स्वीकार करते हैं, जो लगातार पदों के बीच टेलीस्कोपिक निरस्तीकरण की अनुमति देता है।
प्रपत्र के कुछ योग
जहाँ f और g बहुपद फलन हैं जिनके भागफल को आंशिक भिन्नों में विभाजित किया जा सकता है, इस विधि से योग स्वीकार करने में विफल रहेंगे। विशेषतः, एक के पास है
समस्या यह है कि शर्तें निरसित नहीं होतीं.
मान लीजिए k एक धनात्मक पूर्णांक है। तब
जहां Hk kवें हार्मोनिक संख्या है। 1/(k − 1) के बाद के सभी पद निरसित हो जाते हैं।
मान लीजिए k,m के साथ k m धनात्मक पूर्णांक हो. तब
संभाव्यता सिद्धांत में एक अनुप्रयोग
संभाव्यता सिद्धांत में, एक पॉइसन प्रक्रिया एक स्टोकेस्टिक प्रक्रिया है जिसमें सबसे सरल मामले में यादृच्छिक समय पर घटनाएं शामिल होती हैं, स्मृतिहीनता घातीय वितरण वाली अगली घटना तक प्रतीक्षा समय, और किसी भी समय अंतराल में घटनाओं की संख्या जिसमें पॉइसन वितरण होता है जिसकी अपेक्षित मान समय अंतराल की लंबाई के समानुपाती होता है। मान लीजिए एक्सt समय t से पहले घटनाओं की संख्या हो, और मान लीजिए Tx xवीं घटना तक प्रतीक्षा समय हो। हम यादृच्छिक चर T की संभाव्यता घनत्व फलन की तलाश करते हैंx. हम पॉइसन वितरण के लिए संभाव्यता द्रव्यमान फलन का उपयोग करते हैं, जो हमें यह बताता है
जहां λ लंबाई 1 के किसी भी समय अंतराल में घटनाओं की औसत संख्या है। देखें कि घटना {Xt ≥ x} घटना {T के समान हैx ≤ t}, और इस प्रकार उनकी समान संभावना है। सहज रूप से, यदि कुछ घटित होता है तो कम से कम समय से पहले कई बार , हमें ज़्यादा से ज़्यादा इंतज़ार करना होगा के लिए घटना। इसलिए हम जिस घनत्व फलन की तलाश कर रहे हैं वह है
दूरबीनों का योग, जा रहा है
समान अवधारणाएँ
टेलीस्कोपिंग गुणनफल
एक टेलीस्कोपिंग गुणनफल एक सीमित गुणनफल (या एक अनंत गुणनफल का आंशिक गुणनफल) है जिसे भागफल की विधि द्वारा अंततः केवल कारकों की एक सीमित संख्या में निरसित किया जा सकता है।[5][6]
उदाहरण के लिए, अनंत गुणनफल[5]
के रूप में सरलीकृत करता है
अन्य अनुप्रयोग
अन्य अनुप्रयोगों के लिए, देखें:
ग्रांडी की श्रृंखला;
प्रमाण कि अभाज्य संख्याओं के व्युत्क्रमों का योग अलग-अलग होता है, जहां एक प्रमाण दूरबीन योग का उपयोग करता है;
कैलकुलस का मौलिक प्रमेय, टेलीस्कोपिंग श्रृंखला का एक सतत एनालॉग;
आदेश आँकड़ा, जहां एक दूरबीन योग एक संभाव्यता घनत्व फलन की व्युत्पत्ति में होता है;