डेलिग्ने कोहोमोलॉजी

From Vigyanwiki

गणित में, डेलिग्ने कोहोमोलॉजी जटिल अनेक गुना के डेलिग्ने कॉम्प्लेक्स की हाइपरकोहोमोलॉजी है। इसे पियरे डेलिग्ने द्वारा लगभग 1972 में अप्रकाशित कार्य में बीजगणितीय विविधता के लिए कोहोलॉजी सिद्धांत के रूप में पेश किया गया था जिसमें सामान्य कोहोलॉजी और मध्यवर्ती जैकोबियन दोनों शामिल हैं।

डेलिग्ने कोहोमोलॉजी के परिचयात्मक विवरण के लिए देखें Brylinski (2008, section 1.5), Esnault & Viehweg (1988), और Gomi (2009, section 2).

परिभाषा

विश्लेषणात्मक डेलिग्ने कॉम्प्लेक्स Z(p)D, an जटिल विश्लेषणात्मक मैनिफोल्ड पर X

है

जहाँ Z(p) = (2π i)'Z'. संदर्भ के आधार पर, या तो चिकनी का जटिल है (यानी, सी) क्रमशः विभेदक रूप या होलोमोर्फिक रूप।

डेलिग्ने कोहोमोलॉजी H q
D,an
 
(X,Z(p))
डेलिग्ने कॉम्प्लेक्स की q-th हाइपरकोहोमोलॉजी है। इस कॉम्प्लेक्स की वैकल्पिक परिभाषा होमोटॉपी सीमा के रूप में दी गई है[1] आरेख का<ब्लॉककोट></ब्लॉककोट>

गुण

डेलिग्ने कोहोमोलोजी समूह H q
D
 
(X,Z(p))
को ज्यामितीय रूप से वर्णित किया जा सकता है, विशेषकर निम्न डिग्री में। पी = 0 के लिए, यह परिभाषा के अनुसार, क्यू-वें एकवचन कोहोलॉजी समूह ('जेड'-गुणांक के साथ) से सहमत है। क्यू = 2 और पी = 1 के लिए, यह चिकनी (या होलोमोर्फिक, संदर्भ के आधार पर) सर्कल बंडल के आइसोमोर्फिज्म वर्गों के समूह के लिए आइसोमोर्फिक है | प्रिंसिपल 'सी'×-X पर बंडल। p = q = 2 के लिए, यह 'C' के समरूपता वर्गों का समूह है×-कनेक्शन के साथ बंडल (फाइबर बंडल)। q = 3 और p = 2 या 3 के लिए, गेर्ब्स के संदर्भ में विवरण उपलब्ध हैं (Brylinski (2008)). इसे बार-बार वर्गीकृत स्थानों और उन पर कनेक्शन के संदर्भ में उच्च डिग्री में विवरण के लिए सामान्यीकृत किया गया है (Gajer (1997)).

हॉज वर्गों के साथ संबंध

याद रखें कि उपसमूह है इंटीग्रल कोहोमोलॉजी कक्षाओं में हॉज कक्षाओं के समूह को कहा जाता है। डेलिग्ने-कोहोमोलॉजी, उनके इंटरमीडिएट जैकोबियन और हॉज कक्षाओं के इस समूह से संबंधित सटीक अनुक्रम संक्षिप्त सटीक अनुक्रम<ब्लॉककोट> के रूप में है। </ब्लॉककोट>

अनुप्रयोग

डेलिग्ने कोहोमोलॉजी का उपयोग एल-फ़ंक्शंस के विशेष मूल्यों पर बीलिन्सन अनुमान तैयार करने के लिए किया जाता है।

एक्सटेंशन

किसी भी सममित स्पेक्ट्रम के लिए डेलिग्ने-कोहोमोलॉजी का विस्तार परिभाषित किया गया है [1]कहाँ के लिए विषम जिसकी तुलना जटिल विश्लेषणात्मक किस्मों पर सामान्य डेलिग्ने कोहोमोलॉजी से की जा सकती है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Hopkins, Michael J.; Quick, Gereon (March 2015). "हॉज ने जटिल बोर्डिज़्म को फ़िल्टर किया". Journal of Topology. 8 (1): 147–183. arXiv:1212.2173. doi:10.1112/jtopol/jtu021. S2CID 16757713.