नॉनबेलियन हॉज पत्राचार
बीजगणितीय ज्यामिति और विभेदक ज्यामिति में, नॉनबेलियन हॉज पत्राचार या कॉर्लेट-सिम्पसन पत्राचार (केविन कोरलेट और चार्ल्स सिम्पसन के नाम पर) हिग्स बंडलों और एक चिकनी, प्रक्षेप्य विविधता जटिल बीजगणितीय विविधता, या एक सघन स्थान मौलिक समूह के प्रतिनिधित्व के बीच एक पत्राचार है स्पेस काहलर मैनिफोल्ड।
प्रमेय को नरसिम्हन-शेषाद्रि प्रमेय का एक विशाल सामान्यीकरण माना जा सकता है जो स्थिर वेक्टर बंडलों और एक कॉम्पैक्ट रीमैन सतह के मौलिक समूह के एकात्मक प्रतिनिधित्व के बीच एक पत्राचार को परिभाषित करता है। वास्तव में नरसिम्हन-शेषाद्रि प्रमेय को हिग्स फ़ील्ड को शून्य पर सेट करके नॉनबेलियन हॉज पत्राचार के एक विशेष मामले के रूप में प्राप्त किया जा सकता है।
इतिहास
यह 1965 में एम.एस. नरसिम्हन और सी.एस. शेषाद्री द्वारा सिद्ध किया गया था कि एक कॉम्पैक्ट रीमैन सतह पर स्थिर वेक्टर बंडल मौलिक समूह के अपरिवर्तनीय प्रक्षेप्य एकात्मक प्रतिनिधित्व के अनुरूप हैं।[1] इस प्रमेय को 1983 में साइमन डोनाल्डसन के काम में एक नई रोशनी में व्यक्त किया गया था, जिन्होंने दिखाया कि स्थिर वेक्टर बंडल यांग-मिल्स कनेक्शन के अनुरूप हैं, जिनकी पवित्रता नरसिम्हन और शेषाद्रि के मौलिक समूह का प्रतिनिधित्व देती है।[2] नरसिम्हन-शेषाद्रि प्रमेय को कॉम्पैक्ट रीमैन सतहों के मामले से लेकर बीजगणितीय सतहों के मामले में डोनाल्डसन द्वारा कॉम्पैक्ट काहलर मैनिफोल्ड्स की स्थापना तक और सामान्य तौर पर करेन उहलेनबेक और शिंग-तुंग याउ द्वारा सामान्यीकृत किया गया था।[3][4] स्थिर वेक्टर बंडलों और हर्मिटियन यांग-मिल्स कनेक्शन के बीच इस पत्राचार को कोबायाशी-हिचिन पत्राचार के रूप में जाना जाता है।
नरसिम्हन-शेषाद्रि प्रमेय मौलिक समूह के एकात्मक प्रतिनिधित्व से संबंधित है। निगेल हिचिन ने एक बीजगणितीय वस्तु के रूप में हिग्स बंडल की धारणा पेश की, जिसे मौलिक समूह के जटिल प्रतिनिधित्व के अनुरूप होना चाहिए (वास्तव में हिग्स बंडल शब्दावली हिचिन के काम के बाद कार्लोस सिम्पसन द्वारा पेश की गई थी)। नॉनबेलियन हॉज प्रमेय का पहला उदाहरण हिचिन द्वारा सिद्ध किया गया था, जिन्होंने एक कॉम्पैक्ट रीमैन सतह पर रैंक दो हिग्स बंडलों के मामले पर विचार किया था।[5] हिचिन ने दिखाया कि एक पॉलीस्टेबल हिग्स बंडल हिचिन के समीकरणों के समाधान से मेल खाता है, यांग-मिल्स समीकरणों के आयाम दो में आयामी कमी के रूप में प्राप्त अंतर समीकरणों की एक प्रणाली। इस मामले में डोनाल्डसन द्वारा यह दिखाया गया कि हिचिन के समीकरणों के समाधान मौलिक समूह के प्रतिनिधित्व के अनुरूप हैं।[6] कॉम्पैक्ट रीमैन सतह पर रैंक दो के हिग्स बंडलों के लिए हिचिन और डोनाल्डसन के परिणामों को कार्लोस सिम्पसन और केविन कॉर्लेट द्वारा व्यापक रूप से सामान्यीकृत किया गया था। यह कथन कि पॉलीस्टेबल हिग्स बंडल हिचिन के समीकरणों के समाधान के अनुरूप हैं, सिम्पसन द्वारा सिद्ध किया गया था।[7][8] हिचिन के समीकरणों के समाधान और मौलिक समूह के प्रतिनिधित्व के बीच पत्राचार कॉर्लेट द्वारा दिखाया गया था।[9]
परिभाषाएँ
इस खंड में हम नॉनबेलियन हॉज प्रमेय में रुचि की वस्तुओं को याद करते हैं।[7][8]
हिग्स बंडल
एक कॉम्पैक्ट काहलर मैनिफोल्ड पर एक हिग्स बंडल एक जोड़ी है कहाँ एक होलोमोर्फिक वेक्टर बंडल है और एक -मूल्यवान होलोमोर्फिक -पर प्रपत्र , जिसे हिग्स फ़ील्ड कहा जाता है। इसके अतिरिक्त, हिग्स फ़ील्ड को संतुष्ट करना होगा .
एक हिग्स बंडल (अर्ध) स्थिर है, यदि प्रत्येक उचित, गैर-शून्य सुसंगत शीफ के लिए जो हिग्स फील्ड द्वारा संरक्षित है, ताकि , किसी के पास
हर्मिटियन यांग-मिल्स कनेक्शन और हिचिन के समीकरण
उच्च आयाम के लिए हिचिन के समीकरण के सामान्यीकरण को जोड़ी से निर्मित एक निश्चित कनेक्शन के लिए हर्मिटियन यांग-मिल्स समीकरणों के एनालॉग के रूप में दर्शाया जा सकता है। . एक हर्मिटियन मीट्रिक हिग्स बंडल पर चेर्न कनेक्शन को जन्म देता है और वक्रता . शर्त यह है कि होलोमोर्फिक को इस रूप में परिभाषित किया जा सकता है . हिचिन के समीकरण, एक कॉम्पैक्ट रीमैन सतह पर, यह बताते हैं
एक स्थिरांक के लिए . उच्च आयामों में ये समीकरण निम्नानुसार सामान्यीकृत होते हैं। कनेक्शन को परिभाषित करें पर द्वारा . इस कनेक्शन को हर्मिटियन यांग-मिल्स कनेक्शन (और मीट्रिक हर्मिटियन यांग-मिल्स मीट्रिक) कहा जाता है यदि
यह एक कॉम्पैक्ट रीमैन सतह के लिए हिचिन के समीकरणों को कम कर देता है। ध्यान दें कि कनेक्शन सामान्य अर्थों में हर्मिटियन यांग-मिल्स कनेक्शन नहीं है, क्योंकि यह एकात्मक नहीं है, और उपरोक्त स्थिति सामान्य HYM स्थिति का एक गैर-एकात्मक एनालॉग है।
मौलिक समूह और हार्मोनिक मेट्रिक्स का प्रतिनिधित्व
मौलिक समूह का प्रतिनिधित्व निम्नानुसार फ्लैट कनेक्शन के साथ एक वेक्टर बंडल को जन्म देता है। सार्वभौमिक आवरण का एक प्रमुख बंडल है संरचना समूह के साथ . इस प्रकार एक संबद्ध बंडल है द्वारा दिए गए
मीट्रिक यदि हार्मोनिक कहा जाता है
यह कॉर्लेट का परिणाम है कि यदि हार्मोनिक है, तो यह स्वचालित रूप से संतुष्ट हो जाता है और इस प्रकार हिग्स बंडल को जन्म देता है।[9]
मोडुली रिक्त स्थान
तीन अवधारणाओं में से प्रत्येक के लिए: हिग्स बंडल, फ्लैट कनेक्शन, और मौलिक समूह का प्रतिनिधित्व, कोई एक मॉड्यूलि स्पेस को परिभाषित कर सकता है। इसके लिए इन वस्तुओं के बीच समरूपता की धारणा की आवश्यकता होती है। निम्नलिखित में, एक सहज जटिल वेक्टर बंडल को ठीक करें . प्रत्येक हिग्स बंडल को अंतर्निहित चिकनी वेक्टर बंडल माना जाएगा .
- (हिग्स बंडल) जटिल गेज परिवर्तनों का समूह सेट पर अभिनय करता है सूत्र द्वारा हिग्स बंडलों की . अगर और अर्धस्थिर और स्थिर हिग्स बंडलों के उपसमुच्चय को क्रमशः निरूपित करें, फिर किसी को मॉड्यूलि स्पेस प्राप्त होता है जहां इन भागफलों को ज्यामितीय अपरिवर्तनीय सिद्धांत के अर्थ में लिया जाता है, इसलिए जिन कक्षाओं के समापन प्रतिच्छेद होते हैं उन्हें मॉड्यूलि स्पेस में पहचाना जाता है। इन मॉड्यूलि स्पेस को डॉल्बुल्ट मॉड्यूलि स्पेस कहा जाता है। ध्यान दें कि सेटिंग करके , कोई अर्ध-स्थिर और स्थिर होलोमोर्फिक वेक्टर बंडलों के मॉड्यूलि स्पेस को सबसेट के रूप में प्राप्त करता है और . यह भी सत्य है कि यदि कोई मॉड्यूलि स्पेस को परिभाषित करता है पॉलीस्टेबल हिग्स बंडलों की तो यह जगह अर्ध-स्थिर हिग्स बंडलों के स्थान के लिए समरूपी है, क्योंकि अर्ध-स्थिर हिग्स बंडलों की प्रत्येक गेज कक्षा में इसके समापन में पॉलीस्टेबल हिग्स बंडलों की एक अद्वितीय कक्षा होती है।
- (फ्लैट कनेक्शन) समूह जटिल गेज परिवर्तन भी सेट पर कार्य करता है फ्लैट कनेक्शन का चिकने वेक्टर बंडल पर . मॉड्यूलि रिक्त स्थान को परिभाषित करें कहाँ इरेड्यूसेबल फ्लैट कनेक्शन से युक्त सबसेट को दर्शाता है जो प्रत्यक्ष योग के रूप में विभाजित नहीं होता है कुछ बंटवारे पर चिकने वेक्टर बंडल का . इन मॉड्यूलि स्पेस को डी राम मॉड्यूलि स्पेस कहा जाता है।
- (प्रतिनिधित्व) अभ्यावेदन का सेट के मौलिक समूह का अभ्यावेदन के संयुग्मन द्वारा सामान्य रैखिक समूह पर कार्य किया जाता है। सुपरस्क्रिप्ट द्वारा निरूपित करें और उपसमुच्चय में क्रमशः अर्धसरल निरूपण और अघुलनशील निरूपण शामिल हैं। फिर मॉड्यूलि स्पेस को परिभाषित करें क्रमशः अर्धसरल और अघुलनशील अभ्यावेदन का। इन भागफलों को ज्यामितीय अपरिवर्तनीय सिद्धांत के अर्थ में लिया जाता है, जहां दो कक्षाओं की पहचान की जाती है यदि उनके समापन एक दूसरे को काटते हैं। इन मॉड्यूलि स्पेस को बेट्टी मॉड्यूलि स्पेस कहा जाता है।
कथन
नॉनबेलियन हॉज प्रमेय को दो भागों में विभाजित किया जा सकता है। पहला भाग डोनाल्डसन द्वारा कॉम्पैक्ट रीमैन सतह पर रैंक दो हिग्स बंडलों के मामले में और सामान्य तौर पर कॉर्लेट द्वारा सिद्ध किया गया था।[6][9]सामान्य तौर पर नॉनबेलियन हॉज प्रमेय एक सहज जटिल प्रक्षेप्य विविधता को मानता है , लेकिन पत्राचार के कुछ हिस्से कॉम्पैक्ट काहलर मैनिफोल्ड्स के लिए अधिक व्यापकता रखते हैं।
Nonabelian Hodge theorem (part 1) — A representation of the fundamental group is semisimple if and only if the flat vector bundle admits a harmonic metric. Furthermore the representation is irreducible if and only if the flat vector bundle is irreducible.
प्रमेय का दूसरा भाग हिचिन द्वारा कॉम्पैक्ट रीमैन सतह पर रैंक दो हिग्स बंडलों के मामले में और सामान्य तौर पर सिम्पसन द्वारा सिद्ध किया गया था।[5][7][8]
Nonabelian Hodge theorem (part 2) — A Higgs bundle has a Hermitian Yang–Mills metric if and only if it is polystable. This metric is a harmonic metric, and therefore arises from a semisimple representation of the fundamental group, if and only if the Chern classes and vanish. Furthermore, a Higgs bundle is stable if and only if it admits an irreducible Hermitian Yang–Mills connection, and therefore comes from an irreducible representation of the fundamental group.
एक साथ मिलाकर, पत्राचार को इस प्रकार व्यक्त किया जा सकता है:
Nonabelian Hodge theorem — A Higgs bundle (which is topologically trivial) arises from a semisimple representation of the fundamental group if and only if it is polystable. Furthermore it arises from an irreducible representation if and only if it is stable.
मॉड्यूलि स्पेस के संदर्भ में
नॉनबेलियन हॉज पत्राचार न केवल सेटों का आक्षेप देता है, बल्कि मोडुली रिक्त स्थान की होमोमोर्फिज्म भी देता है। वास्तव में, यदि दो हिग्स बंडल आइसोमोर्फिक हैं, इस अर्थ में कि वे गेज परिवर्तन से संबंधित हो सकते हैं और इसलिए डॉल्बौल्ट मॉड्यूलि स्पेस में एक ही बिंदु के अनुरूप हैं, तो संबंधित प्रतिनिधित्व भी आइसोमोर्फिक होंगे, और वही बिंदु देंगे बेटी मोडुली स्पेस. मॉड्यूलि स्पेस के संदर्भ में नॉनबेलियन हॉज प्रमेय को निम्नानुसार व्यक्त किया जा सकता है।
Nonabelian Hodge theorem (moduli space version) — There are homeomorphisms of moduli spaces which restrict to homeomorphisms .
सामान्य तौर पर ये मॉड्यूलि स्पेस सिर्फ टोपोलॉजिकल स्पेस नहीं होंगे, बल्कि इनमें कुछ अतिरिक्त संरचना भी होगी। उदाहरण के लिए, डॉल्बुल्ट मॉड्यूलि स्पेस और बेट्टी मॉड्यूलि स्पेस स्वाभाविक रूप से जटिल बीजगणितीय किस्में हैं, और जहां यह चिकनी है, डी राम मोडुली स्पेस एक रीमैनियन मैनिफोल्ड है। सामान्य लोकस पर जहां ये मॉड्यूलि स्थान सुचारू हैं, मानचित्र एक भिन्नरूपता है, और तब से चिकने स्थान पर एक जटिल अनेक गुना है, एक संगत रीमैनियन और जटिल संरचना प्राप्त करता है, और इसलिए यह काहलर मैनिफोल्ड है।
इसी प्रकार, चिकनी लोकस पर, मानचित्र एक भिन्नरूपता है. हालाँकि, भले ही डॉल्बुल्ट और बेट्टी मोडुली स्पेस दोनों में प्राकृतिक जटिल संरचनाएँ हैं, ये आइसोमॉर्फिक नहीं हैं। वास्तव में, यदि उन्हें निरूपित किया जाता है (संबंधित अभिन्न लगभग जटिल संरचनाओं के लिए) तो . विशेष रूप से यदि कोई तीसरी लगभग जटिल संरचना को परिभाषित करता है तब . यदि कोई इन तीन जटिल संरचनाओं को रीमैनियन मीट्रिक से जोड़ता है , फिर चिकने स्थान पर मॉड्यूलि स्पेस हाइपरकेहलर मैनिफोल्ड बन जाता है।
हिचिन-कोबायाशी पत्राचार और एकात्मक प्रतिनिधित्व से संबंध
यदि कोई हिग्स फ़ील्ड सेट करता है शून्य तक, तो हिग्स बंडल बस एक होलोमोर्फिक वेक्टर बंडल है। इससे एक समावेश मिलता है अर्ध-स्थिर होलोमोर्फिक वेक्टर बंडलों के मॉड्यूलि स्पेस का हिग्स बंडलों के मॉड्यूलि स्पेस में। हिचिन-कोबायाशी पत्राचार होलोमोर्फिक वेक्टर बंडलों और कॉम्पैक्ट काहलर मैनिफोल्ड्स पर हर्मिटियन यांग-मिल्स कनेक्शन के बीच एक पत्राचार देता है, और इसलिए इसे नॉनबेलियन हॉज पत्राचार के एक विशेष मामले के रूप में देखा जा सकता है।
जब अंतर्निहित वेक्टर बंडल टोपोलॉजिकल रूप से तुच्छ होता है, तो हर्मिटियन यांग-मिल्स कनेक्शन की होलोनॉमी मौलिक समूह के एकात्मक प्रतिनिधित्व को जन्म देगी, . एकात्मक अभ्यावेदन के अनुरूप बेट्टी मोडुली स्पेस का उपसमुच्चय, निरूपित , अर्ध-स्थिर वेक्टर बंडलों के मॉड्यूलि स्पेस पर आइसोमोर्फिक रूप से मैप किया जाएगा .
उदाहरण
कॉम्पैक्ट रीमैन सतहों पर एक हिग्स बंडल को रैंक करें
विशेष मामला जहां अंतर्निहित वेक्टर बंडल की रैंक एक है, एक सरल पत्राचार को जन्म देता है।[10] सबसे पहले, प्रत्येक पंक्ति बंडल स्थिर है, क्योंकि कोई उचित गैर-शून्य उपशीर्ष नहीं हैं। इस मामले में, हिग्स बंडल में एक जोड़ी होती है एक होलोमोर्फिक लाइन बंडल और एक होलोमोर्फिक -रूप, चूंकि एक लाइन बंडल की एंडोमोर्फिज्म तुच्छ है। विशेष रूप से, हिग्स फ़ील्ड को होलोमोर्फिक लाइन बंडल से अलग किया जाता है, इसलिए मॉड्यूलि स्पेस एक उत्पाद के रूप में विभाजित हो जाएगा, और एक-रूप स्वचालित रूप से शर्त को पूरा करता है . लाइन बंडल का गेज समूह क्रमविनिमेय है, और इसलिए हिग्स फ़ील्ड पर तुच्छ रूप से कार्य करता है संयुग्मन द्वारा. इस प्रकार मॉड्यूलि स्पेस को एक उत्पाद के रूप में पहचाना जा सकता है
कॉम्पैक्ट रीमैन सतहों पर रैंक एक हिग्स बंडलों के मामले में, किसी को मॉड्यूलि स्पेस का एक और विवरण प्राप्त होता है। एक कॉम्पैक्ट रीमैन सतह का मूल समूह, एक सतह समूह, द्वारा दिया गया है
अर्थात्, डॉल्बुल्ट मॉड्यूलि स्पेस, होलोमोर्फिक हिग्स लाइन बंडलों का मॉड्यूलि स्पेस, बस जैकोबियन का कोटैंजेंट बंडल है, होलोमोर्फिक लाइन बंडलों का मॉड्यूलि स्पेस। इसलिए नॉनबेलियन हॉज पत्राचार एक भिन्नता देता है
जो कि बायोहोलोमोर्फिज्म नहीं है। कोई यह जाँच सकता है कि इन दोनों स्थानों पर प्राकृतिक जटिल संरचनाएँ भिन्न हैं, और संबंध को संतुष्ट करती हैं , जैकोबियन को कोटैंजेंट बंडल पर एक हाइपरकेहलर संरचना दे रहा है।
सामान्यीकरण
प्रिंसिपल की धारणा को परिभाषित करना संभव है -एक जटिल रिडक्टिव बीजगणितीय समूह के लिए हिग्स बंडल , प्रमुख बंडलों की श्रेणी में हिग्स बंडलों का एक संस्करण। एक स्थिर प्रिंसिपल बंडल की धारणा है, और कोई एक स्थिर प्रिंसिपल को परिभाषित कर सकता है -हिग्स बंडल. नॉनबेलियन हॉज प्रमेय का एक संस्करण इन वस्तुओं के लिए संबंधित सिद्धांत रखता है -हिग्स मूल समूह के अभ्यावेदन को बंडल करता है .[7][8][11]
नॉनबेलियन हॉज सिद्धांत
हिग्स बंडलों और मौलिक समूह के प्रतिनिधित्व के बीच पत्राचार को एक प्रकार के नॉनबेलियन हॉज सिद्धांत के रूप में परिभाषित किया जा सकता है, जिसका अर्थ है, काहलर मैनिफोल्ड की जटिल प्रक्षेप्य किस्मों के लिए हॉज सिद्धांत#हॉज सिद्धांत का एक सादृश्य, लेकिन गुणांक के साथ नॉनबेलियन समूह एबेलियन समूह के बजाय . यहां प्रदर्शनी कॉम्प्लेक्स मैनिफोल्ड्स पर वेल्स के डिफरेंशियल एनालिसिस के परिशिष्ट में ऑस्कर गार्सिया-प्राडा की चर्चा का अनुसरण करती है।[12]
हॉज अपघटन
एक कॉम्पैक्ट काहलर मैनिफोल्ड का हॉज अपघटन जटिल डी गर्भ एक तीर्थयात्री के रूप में को बेहतर डोल्बौल्ट कोहोमोलॉजी में विघटित करता है:
नॉनबेलियन कोहोमोलॉजी
शीफ कोहोमोलॉजी का निर्माण करते समय, गुणांक शीफ हमेशा एबेलियन समूहों का एक समूह होता है। ऐसा इसलिए है क्योंकि एबेलियन समूह के लिए, प्रत्येक उपसमूह सामान्य उपसमूह है, इसलिए भागफल समूह है
- : 0वां शीफ कोहोमोलॉजी समूह हमेशा शीफ के वैश्विक वर्गों का स्थान होता है , तो हमेशा अच्छी तरह से परिभाषित होता है भले ही नॉनबेलियन है.
- : पहला शीफ कोहोमोलॉजी सेट नॉनबेलियन शीफ के लिए अच्छी तरह से परिभाषित है , लेकिन यह स्वयं एक भागफल समूह नहीं है।
- : कुछ विशेष मामलों में, गेर्ब्स के सिद्धांत का उपयोग करके नॉनबेलियन शीव्स के लिए दूसरी डिग्री शीफ कोहोलॉजी का एक एनालॉग परिभाषित किया जा सकता है।
नॉनबेलियन कोहोमोलॉजी का एक प्रमुख उदाहरण तब होता है जब गुणांक शीफ होता है , होलोमोर्फिक का शीफ जटिल सामान्य रैखिक समूह में कार्य करता है। इस मामले में यह सेच कोहोमोलॉजी से एक प्रसिद्ध तथ्य है कि कोहोमोलॉजी सेट होता है
नॉनबेलियन हॉज प्रमेय
पहला कोहोमोलोजी समूह मौलिक समूह से समरूपता के समूह के लिए समरूपी है को . इसे, उदाहरण के लिए, ह्यूरेविक्ज़ प्रमेय को लागू करके समझा जा सकता है। इस प्रकार ऊपर उल्लिखित नियमित हॉज अपघटन को इस प्रकार परिभाषित किया जा सकता है
यहाँ समरूपता लिखी गई है , लेकिन यह सेटों की वास्तविक समरूपता नहीं है, क्योंकि हिग्स बंडलों का मॉड्यूलि स्पेस वस्तुतः उपरोक्त प्रत्यक्ष योग द्वारा नहीं दिया गया है, क्योंकि यह केवल एक सादृश्य है।
हॉज संरचना
मॉड्यूलि स्पेस अर्ध-स्थिर हिग्स बंडलों में गुणक समूह की प्राकृतिक क्रिया होती है , हिग्स फ़ील्ड को स्केल करके दिया गया: के लिए . एबेलियन कोहोमोलॉजी के लिए, जैसे कार्रवाई एक हॉज संरचना को जन्म देती है, जो एक कॉम्पैक्ट काहलर मैनिफोल्ड के कोहोलॉजी के हॉज अपघटन का सामान्यीकरण है। नॉनबेलियन हॉज प्रमेय को समझने का एक तरीका इसका उपयोग करना है मॉड्यूलि स्पेस पर कार्रवाई हॉज निस्पंदन प्राप्त करने के लिए। इससे अंतर्निहित मैनिफ़ोल्ड के नए टोपोलॉजिकल इनवेरिएंट उत्पन्न हो सकते हैं . उदाहरण के लिए, कोई इस बात पर प्रतिबंध प्राप्त कर सकता है कि कौन से समूह इस तरह से कॉम्पैक्ट काहलर मैनिफ़ोल्ड के मूलभूत समूहों के रूप में प्रकट हो सकते हैं।[7]
संदर्भ
- ↑ Narasimhan, M. S.; Seshadri, C. S. (1965). "एक कॉम्पैक्ट रीमैन सतह पर स्थिर और एकात्मक वेक्टर बंडल". Annals of Mathematics. 82 (3): 540–567. doi:10.2307/1970710. JSTOR 1970710. MR 0184252.
- ↑ Donaldson, Simon K. (1983), "A new proof of a theorem of Narasimhan and Seshadri", Journal of Differential Geometry, 18 (2): 269–277, doi:10.4310/jdg/1214437664, MR 0710055
- ↑ Donaldson, Simon K. (1985). "जटिल बीजगणितीय सतहों और स्थिर वेक्टर बंडल पर एंटी सेल्फ-डुअल यांग-मिल्स कनेक्शन". Proceedings of the London Mathematical Society. 3. 50 (1): 1–26. doi:10.1112/plms/s3-50.1.1. MR 0765366.
- ↑ Uhlenbeck, Karen; Yau, Shing-Tung (1986), "On the existence of Hermitian–Yang–Mills connections in stable vector bundles", Communications on Pure and Applied Mathematics, 39: S257–S293, doi:10.1002/cpa.3160390714, ISSN 0010-3640, MR 0861491
- ↑ 5.0 5.1 Hitchin, Nigel J. (1987). "रीमैन सतह पर आत्म-द्वैत समीकरण". Proceedings of the London Mathematical Society. 55 (1): 59–126. doi:10.1112/plms/s3-55.1.59. MR 0887284.
- ↑ 6.0 6.1 Donaldson, Simon K. (1987). "मुड़े हुए हार्मोनिक मानचित्र और स्व-द्वैत समीकरण". Proceedings of the London Mathematical Society. 55 (1): 127–131. doi:10.1112/plms/s3-55.1.127. MR 0887285.
- ↑ 7.0 7.1 7.2 7.3 7.4 Simpson, Carlos T. (1991), "Nonabelian Hodge theory", Proceedings of the International Congress of Mathematicians (Kyoto, 1990) (PDF), vol. 1, Tokyo: Math. Soc. Japan, pp. 747–756, MR 1159261
- ↑ 8.0 8.1 8.2 8.3 Simpson, Carlos T. (1992). "हिग्स बंडल और स्थानीय सिस्टम". Publications Mathématiques de l'IHÉS. 75: 5–95. doi:10.1007/BF02699491. MR 1179076. S2CID 56417181.
- ↑ 9.0 9.1 9.2 Corlette, Kevin (1988). "फ्लैट जी-विहित मेट्रिक्स के साथ बंडल". Journal of Differential Geometry. 28 (3): 361–382. doi:10.4310/jdg/1214442469. MR 0965220.
- ↑ Goldman, William M.; Xia, Eugene Z. (2008). "रैंक एक हिग्स बंडल और रीमैन सतहों के मौलिक समूहों का प्रतिनिधित्व". Memoirs of the American Mathematical Society (in English). 193 (904): viii+69 pp. arXiv:math/0402429. doi:10.1090/memo/0904. ISSN 0065-9266. MR 2400111. S2CID 2865489.
- ↑ Anchouche, Boudjemaa; Biswas, Indranil (2001). "Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold" (PDF). American Journal of Mathematics. 123 (2): 207–228. doi:10.1353/ajm.2001.0007. MR 1828221. S2CID 122182133.
- ↑ Wells, Raymond O., Jr. (1980). जटिल मैनिफोल्ड्स पर विभेदक विश्लेषण. Graduate Texts in Mathematics. Vol. 65 (2nd ed.). New York-Berlin: Springer-Verlag. ISBN 0-387-90419-0. MR 0608414.
{{cite book}}
: CS1 maint: multiple names: authors list (link)