समीकरणों का आकलन

From Vigyanwiki
Revision as of 22:41, 6 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Statistics method}} सांख्यिकी में, समीकरणों का अनुमान लगाने की विधि य...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सांख्यिकी में, समीकरणों का अनुमान लगाने की विधि यह निर्दिष्ट करने का एक तरीका है कि सांख्यिकीय मॉडल के मापदंडों का अनुमान कैसे लगाया जाना चाहिए। इसे कई शास्त्रीय तरीकों के सामान्यीकरण के रूप में सोचा जा सकता है - क्षणों की विधि (सांख्यिकी), न्यूनतम वर्ग, और अधिकतम संभावना - साथ ही एम-आकलनकर्ता जैसी कुछ हालिया विधियां।

विधि का आधार नमूना डेटा और अज्ञात मॉडल पैरामीटर दोनों को शामिल करने वाले एक साथ समीकरणों का एक सेट रखना या ढूंढना है, जिन्हें पैरामीटर के अनुमान को परिभाषित करने के लिए हल किया जाना है।[1] समीकरणों के विभिन्न घटकों को प्रेक्षित डेटा के सेट के संदर्भ में परिभाषित किया गया है, जिस पर अनुमान आधारित होने हैं।

समीकरणों के आकलन के महत्वपूर्ण उदाहरण संभावना समीकरण हैं।

उदाहरण

घातीय वितरण के दर पैरामीटर, λ का अनुमान लगाने की समस्या पर विचार करें जिसमें संभाव्यता घनत्व फ़ंक्शन है:

मान लीजिए कि डेटा का एक नमूना उपलब्ध है जिसमें से या तो नमूने का मतलब है, , या नमूना माध्यिका, मी, की गणना की जा सकती है। फिर माध्य पर आधारित एक आकलन समीकरण है

जबकि माध्यिका पर आधारित आकलन समीकरण है

इनमें से प्रत्येक समीकरण एक नमूना मूल्य (नमूना आँकड़ा) को एक सैद्धांतिक (जनसंख्या) मूल्य के बराबर करके प्राप्त किया जाता है। प्रत्येक मामले में नमूना आँकड़ा जनसंख्या मूल्य का एक सुसंगत अनुमानक है, और यह अनुमान के लिए इस प्रकार के दृष्टिकोण के लिए एक सहज औचित्य प्रदान करता है।

यह भी देखें

संदर्भ

  1. Dodge, Y. (2003). सांख्यिकीय शर्तों का ऑक्सफोर्ड डिक्शनरी. OUP. ISBN 0-19-920613-9.
  • Godambe, V. P., ed. (1991). Estimating Functions. New York: Oxford University Press. ISBN 0-19-852228-2.
  • Heyde, Christopher C. (1997). Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation. New York: Springer-Verlag. ISBN 0-387-98225-6.
  • McLeish, D. L.; Small, Christopher G. (1988). The Theory and Applications of Statistical Inference Functions. New York: Springer-Verlag. ISBN 0-387-96720-6.
  • Small, Christopher G.; Wang, Jinfang (2003). Numerical Methods for Nonlinear Estimating Equations. New York: Oxford University Press. ISBN 0-19-850688-0.