उदाहरण के रूप में, अनमान्यकृत और मानकृत सिंक फ़ंक्शन के लिए उपरोक्त दोनों में का 0 होता है, क्योंकि दोनों में x = 0 पर उनके वृहत्तम मान 1 होते हैं।
असामान्यीकृत चिन्ह फ़ंक्शन (लाल) का आर्ग न्यूनतम अधिकतर {−4.49, 4.49} होता है, इसके x = ±4.49 पर अधिकतर -0.217 के दो वृहत्तम न्यूनतम मान होते हैं। यद्यपि, सामान्यीकृत चिन्ह फ़ंक्शन (नीला) का आर्ग न्यूनतम {−1.43, 1.43} होता है,क्योंकि इसके वृहत्तम न्यूनतम मान x = ±1.43 पर होते हैं, चूंकि न्यूनतम मान समान होता है।[1]
गणित में, मैक्सिमा के तर्क ( (संक्षिप्त रूप में आर्ग मैक्स या आर्गमैक्स) के तर्क किसी फ़ंक्शन (गणित) के डोमेन के बिंदु होते हैं, जिन पर फ़ंक्शन के मान अधिकतम होते हैं।[note 1] जिस पर फ़ंक्शन मान मैक्सिमा और मिनिमा होते हैं। वैश्विक अधिकतम के विपरीत, जो संदर्भित करता है किसी फ़ंक्शन का सबसे बड़ा आउटपुट, आर्ग मैक्स इनपुट या तर्क को संदर्भित करता है, जिस पर फ़ंक्शन आउटपुट जितना संभव हो उतना बड़ा होता है।
विचित्र समुच्चय ,पूरी प्रकार से ऑर्डर किया गया समुच्चय, और फ़ंक्शन, , के लिए के किसी उपसेट के लिए (आर्ग मैक्स) को निम्न रूप में परिभाषित किया जाता है:
यदि या होता है, तो अधिकांशतः को छोड़ दिया जाता है, जैसे अन्या शब्दों में, अंकों का समुच्चय (गणित) है जिसमें के बिंदु सम्मलित हैं, जिनके लिए फ़ंक्शन का सबसे बड़ा मान प्राप्त करता है (यदि यह उपस्थित है)। यह खाली समुच्चय, सिंगलटन (गणित) हो सकता है, या इसमें कई तत्व सम्मलित हो सकते हैं।
उत्तल विश्लेषण और परिवर्तनशील विश्लेषण के क्षेत्र में,थोड़ी अलग परिभाषा का उपयोग किया जाता है जब विशेष स्थितियों में विस्तारित वास्तविक संख्याएँ होती हैं।[2] इस स्थितियों में, यदि समान रूप से समान होता है,तो (इसका तात्पर्य है ) और अन्यथा उपरोक्त रूप में परिभाषित होता है, जहां इस स्थितियों में को इस प्रकार लिखा जा सकता है:
जहां इसे संकेत में रखा गया है कि यह समानता के साथ केवल उस स्थिति में साझा किया जाता है जब , .पर असीम नहीं होता है।[2]
आर्ग न्यूनतम
(या ) की धारणा (जो न्यूनतम के तर्क के लिए होती है) उसी विधि से परिभाषित होती है। उदाहरण के लिए,
के बिंदु वही होते हैं जिनके लिए फ़ंक्शन का सबसे छोटा मान प्राप्त करता है। यह. (न्यूनतम के तर्क का तर्क) के पूरक ऑपरेटर होता है।
विशेष स्थितियों में जहां विस्तारित यथार्थात्मक संख्याएँ होती हैं, यदि सभी पर असीम रूप से पर तबके समान होता है, तो (इसका तात्पर्य है, ) होता है, और अन्यथा f उपरोक्त रूप में परिभाषित होता है और इसके अतिरिक्त, इस स्थितियों में (जब असीमता रूप से के समान नहीं होता है) निम्नलिखित को भी पूर्ण करता है:
उदाहरण के लिए, यदि है है, तो का अधिकतम मान को केवल बिंदु पर प्राप्त करता है। इसलिए,
ऑपरेटर अभिगम के ऑपरेटर से अलग होता है। अभिगम ऑपरेटर, ऐसे फ़ंक्शन को देने पर, फ़ंक्शन का अधिकतम मान लौटाता है बजाय उस बिंदु या बिंदुओं का जो उस फ़ंक्शन को उस मान तक पहुंचाते हैं। इन शब्दों में,
में तत्व है
की प्रकार रिक्त समुच्चय (जिसमें अधिकतम परिभाषित नहीं होता) या एकल समुच्चय हो सकता है, किन्तु के विपरीत, एकाधिक तत्वों को नहीं समेत सकता है: उदाहरण के लिए, यदि : उदाहरण के लिए, यदि = है, तो किन्तु क्योंकि फ़ंक्शन प्रत्येक तत्व पर समान मान प्राप्त करता है
समान रूप से, यदि की अधिकतम है तो अधिकतम का स्तर समुच्चय है:[note 2]
हम इसे पुनर्व्यवस्थित करके सरल सम्मिश्रण प्राप्त कर सकते हैं[note 3]
यदि अधिकतम बिंदु पर पहुंच जाता है तो इस बिंदु को अधिकांशतः के रूप में संदर्भित किया जाता है और को बिंदु माना जाता है, न कि बिंदुओं का सेट के लिए। इसलिए, उदाहरण के लिए,
(सिंगलटन (गणित) समुच्चय के अतिरिक्त ), क्योंकि फ़ंक्शन का अधिकतम मान है, जो बिंदु [note 4] पर होता है। चूंकि, यदि अधिकतम कई बिंदुओं पर पहुंचा जाता है, तो को बिंदु सेट के रूप में विचार किया जाना चाहिए।
उदाहरण के लिए
क्योंकि का अधिकतम मान है, जो इस अवधि पर बिंदु या पर होता है। पूरे वास्तविक रेखा पर,
तो अनंत समुच्चय है।
फ़ंक्शन सामान्यतः अधिकतम मान नहीं प्राप्त करते हैं, और इसलिए कभी-कभी रिक्त सेट होता है; उदाहरण के लिए, क्योंकि ,वास्तविक रेखा पर असीमित होता है। उदाहरण के रूप में, यद्यपि | आवरित होता है से यद्यपि, चरम मूल्य प्रमेय के अनुसार, अंतराल (गणित) पर सतत वास्तविक-मूल्यवान फ़ंक्शन में अधिकतम होता है, और इसलिए खाली नहीं होता है।