प्राकृतिक संख्याओं की समुच्चय-सैद्धांतिक परिभाषा

From Vigyanwiki
Revision as of 12:05, 7 July 2023 by alpha>Amank

समुच्चय सिद्धान्त में, प्राकृतिक संख्याओं के निर्माण के लिए कई तरीके प्रस्तावित किए गए हैं। इनमें वॉन न्यूमैन ऑर्डिनल्स माध्यम से प्रतिनिधित्व सम्मलित है, जो सामान्यतः स्वयंसिद्ध समुच्चय सिद्धान्त में नियोजित होता है, और गोटलोब फ्रीज और बर्ट्रेंड रसेल द्वारा प्रस्तावित समतुल्यता पर आधारित एक प्रणाली है।

वॉन न्यूमैन ऑर्डिनल्स के रूप में परिभाषा

ज़र्मेलो-फ़्रैन्केल समुच्चय सिद्धान्त | ज़र्मेलो-फ़्रैन्केल (जेडएफ) समुच्चय सिद्धान्त में, प्राकृतिक संख्याओं को पुनरावर्ती रूप से परिभाषित किया जाता है 0 = {} खाली सेट हो और n + 1 = n ∪ {n} प्रत्येक एन के लिए। इस प्रकार से n = {0, 1, …, n − 1} प्रत्येक प्राकृत संख्या n के लिए। इस परिभाषा में यह गुण है कि n, n तत्वों वाला एक समुच्चय (गणित) है। इस प्रकार परिभाषित पहली कुछ संख्याएँ हैं: (गोल्डरेई 1996)

प्राकृतिक संख्याओं के समुच्चय N को इस प्रणाली में 0 वाले सबसे छोटे समुच्चय के रूप में परिभाषित किया गया है और इसे परिभाषित उत्तराधिकारी फ़ंक्शन S के अनुसार बंद किया गया है S(n) = n ∪ {n}. ढांचा N, 0, S पीनो अभिगृहीत का एक मॉडल है (गोल्डरेई 1996). समुच्चय N का अस्तित्व ZF समुच्चय सिद्धांत में अनंत के अभिगृहीत के समतुल्य है।

सेट एन और उसके तत्व, जब इस तरह से निर्मित होते हैं, तो वॉन न्यूमैन ऑर्डिनल्स का प्रारंभिक हिस्सा होते हैं। रेवेन और क्वीन इन सेटों को काउंटर सेट के रूप में संदर्भित करते हैं।[1]


फ़्रीज और रसेल

गोटलोब फ़्रीज और बर्ट्रेंड रसेल ने प्रत्येक ने n तत्वों के साथ सभी सेटों के संग्रह के रूप में एक प्राकृतिक संख्या n को परिभाषित करने का प्रस्ताव रखा। अधिक औपचारिक रूप से, एक प्राकृतिक संख्या समसंख्या के समतुल्य संबंध के अनुसार परिमित सेटों का एक समतुल्य वर्ग है। यह परिभाषा गोलाकार दिखाई दे सकती है, लेकिन ऐसा नहीं है, क्योंकि समसंख्याकता को वैकल्पिक तरीकों से परिभाषित किया जा सकता है, उदाहरण के लिए यह कहकर कि दो सेट समसंख्यक हैं यदि उन्हें एक-से-एक पत्राचार में रखा जा सकता है - इसे कभी-कभी ह्यूम के सिद्धांत के रूप में जाना जाता है।

यह परिभाषा प्रकार सिद्धांत और समुच्चय सिद्धान्त में काम करती है जो टाइप प्रणाली से विकसित हुई है, जैसे कि नई नींव और संबंधित सिस्टम। चूंकि, यह स्वयंसिद्ध समुच्चय सिद्धान्त जेडएफसी में और न ही कुछ संबंधित प्रणालियों में काम नहीं करता है, क्योंकि ऐसी प्रणालियों में समतुल्यता के अनुसार समतुल्य वर्ग सेट के अतिरिक्त उचित वर्ग हैं।

प्राकृतिक संख्याओं को एक समुच्चय बनाने में सक्षम बनाने के लिए, समतुल्य वर्गों को विशेष समुच्चयों से प्रतिस्थापित किया जाता है, जिन्हें कार्डिनल संख्या कहा जाता है। कार्डिनल्स को पेश करने का सबसे सरल तरीका एक आदिम धारणा, कार्ड , और जेडएफ समुच्चय सिद्धान्त (पसंद के सिद्धांत के बिना) में कार्डिनैलिटी का एक सिद्धांत जोड़ना है। [2]

कार्डिनैलिटी का सिद्धांत: सेट ए और बी समतुल्य हैं यदि और केवल यदि कार्ड (ए) = कार्ड (बी)

परिभाषा: कार्डिनल K और L का योग जैसे K= कार्ड(A) और L = कार्ड(B) जहां सेट A और B असंयुक्त हैं, कार्ड (A ∪ B) है।

परिमित समुच्चय की परिभाषा प्राकृतिक संख्याओं से स्वतंत्र रूप से दी गई है: [3]

परिभाषा: एक समुच्चय परिमित है, और केवल यदि उसके उपसमुच्चय के किसी गैर-रिक्त परिवार में समावेशन क्रम के लिए न्यूनतम तत्व हो।

परिभाषा: एक कार्डिनल n एक प्राकृतिक संख्या है, और केवल यदि कोई परिमित सेट सम्मलित है जिसका कार्डिनल n है।

0 = कार्ड (∅)

1 = कार्ड({ए}) = कार्ड({∅})

परिभाषा: कार्डिनल K का उत्तराधिकारी कार्डिनल K + 1 है

प्रमेय: प्राकृतिक संख्याएँ पीनो के सिद्धांतों को संतुष्ट करती हैं

हैचर

विलियम एस. हैचर (1982) ने पीनो के स्वयंसिद्धों को कई मूलभूत प्रणालियों से प्राप्त किया है, जिसमें जेडएफसी और श्रेणी सिद्धांत सम्मलित हैं, और आधुनिक संकेतन और प्राकृतिक कटौती का उपयोग करते हुए फ्रेगे के ग्रुंडगेसेट्ज़ डेर अंकगणित की प्रणाली से प्राप्त किया गया है। रसेल विरोधाभास ने इस प्रणाली को असंगत सिद्ध करना कर दिया, लेकिन जॉर्ज बूलोस (1998) और डेविड जे. एंडरसन और एडवर्ड ज़ाल्टा (2004) बताते हैं कि इसे कैसे सुधारा जाए।

यह भी देखें

संदर्भ

  • Anderson, D. J., and Edward Zalta, 2004, "Frege, Boolos, and Logical Objects," Journal of Philosophical Logic 33: 1–26.
  • George Boolos, 1998. Logic, Logic, and Logic.
  • Goldrei, Derek (1996). Classic Set Theory. Chapman & Hall.
  • Abraham Fraenkel, 1968 (1953). Abstrast Set Theory. North Holland, Amsterdam, 4th edtition.
  • Hatcher, William S., 1982. The Logical Foundations of Mathematics. Pergamon. In this text, S refers to the Peano axioms.
  • Holmes, Randall, 1998. Elementary Set Theory with a Universal Set. Academia-Bruylant. The publisher has graciously consented to permit diffusion of this introduction to NFU via the web. Copyright is reserved.
  • Patrick Suppes, 1972 (1960). Axiomatic Set Theory. Dover.


उद्धरण

  1. W. V. O. Quine, Mathematical Logic (1981), p.247. Harvard University Press, 0-674-55451-5.
  2. Fraenkel 1953.
  3. Suppes 1972.


बाहरी संबंध