फिटनेस सन्निकटन

From Vigyanwiki
Revision as of 11:51, 10 July 2023 by alpha>Indicwiki (Created page with "{{No footnotes|date=April 2009}} फिटनेस सन्निकटन<ref name=Jin1>Y. Jin. [https://link.springer.com/article/10.1007/s00500-003-0328-5 A comprehensiv...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

फिटनेस सन्निकटन[1] संख्यात्मक सिमुलेशन या भौतिक प्रयोगों से एकत्र किए गए डेटा के आधार पर मशीन लर्निंग मॉडल का निर्माण करके विकासवादी अनुकूलन में उद्देश्य या फिटनेस कार्यों का अनुमान लगाना है। फिटनेस सन्निकटन के लिए मशीन लर्निंग मॉडल को मेटा-मॉडल या सरोगेट के रूप में भी जाना जाता है, और अनुमानित फिटनेस मूल्यांकन के आधार पर विकासवादी अनुकूलन को सरोगेट-सहायता विकासवादी सन्निकटन के रूप में भी जाना जाता है।[2] विकासवादी अनुकूलन में फिटनेस सन्निकटन को डेटा-संचालित विकासवादी अनुकूलन के उप-क्षेत्र के रूप में देखा जा सकता है।[3]


फ़ंक्शन अनुकूलन में अनुमानित मॉडल

प्रेरणा

इंजीनियरिंग समस्याओं सहित कई वास्तविक दुनिया की अनुकूलन समस्याओं में, एक अच्छा समाधान प्राप्त करने के लिए आवश्यक फिटनेस कार्य मूल्यांकन की संख्या अनुकूलन (गणित) लागत पर हावी होती है। कुशल अनुकूलन एल्गोरिदम प्राप्त करने के लिए, अनुकूलन प्रक्रिया के दौरान प्राप्त पूर्व जानकारी का उपयोग करना महत्वपूर्ण है। वैचारिक रूप से, ज्ञात पूर्व जानकारी का उपयोग करने का एक प्राकृतिक दृष्टिकोण मूल्यांकन के लिए उम्मीदवार समाधानों के चयन में सहायता के लिए फिटनेस फ़ंक्शन का एक मॉडल बनाना है। कम्प्यूटेशनल रूप से महंगी अनुकूलन समस्याओं के लिए ऐसे मॉडल के निर्माण के लिए विभिन्न तकनीकों पर विचार किया गया है, जिन्हें अक्सर सरोगेट्स, मेटामॉडल या सन्निकटन मॉडल भी कहा जाता है।

दृष्टिकोण

एक छोटी आबादी के ज्ञात फिटनेस मूल्यों से सीखने और प्रक्षेप के आधार पर अनुमानित मॉडल बनाने के सामान्य तरीकों में शामिल हैं:

प्रशिक्षण नमूनों की सीमित संख्या और इंजीनियरिंग डिज़ाइन अनुकूलन में आने वाली उच्च आयामीता के कारण, विश्व स्तर पर मान्य अनुमानित मॉडल का निर्माण करना मुश्किल बना हुआ है। परिणामस्वरूप, ऐसे अनुमानित फिटनेस कार्यों का उपयोग करने वाले विकासवादी एल्गोरिदम स्थानीय ऑप्टिमा में परिवर्तित हो सकते हैं। इसलिए, अनुमानित मॉडल के साथ मूल फिटनेस फ़ंक्शन का चयन करना फायदेमंद हो सकता है।

अनुकूली फजी फिटनेस ग्रैन्यूलेशन

अनुकूली फजी फिटनेस ग्रैनुलेशन (एएफएफजी) परिमित तत्व विधि या बायेसियन नेटवर्क संरचना की पुनरावृत्त फिटिंग में पारंपरिक कम्प्यूटेशनल रूप से महंगे बड़े पैमाने पर समस्या विश्लेषण जैसे (एल-एसपीए) के स्थान पर फिटनेस फ़ंक्शन के अनुमानित मॉडल के निर्माण के लिए एक प्रस्तावित समाधान है। .

अनुकूली फ़ज़ी फिटनेस ग्रैन्यूलेशन में, सटीक गणना किए गए फिटनेस फ़ंक्शन परिणाम के साथ, फजी लॉजिक ग्रैन्यूल द्वारा दर्शाए गए समाधानों का एक अनुकूली पूल बनाए रखा जाता है। यदि कोई नया व्यक्ति मौजूदा ज्ञात फजी ग्रेन्युल के समान पर्याप्त है, तो उस ग्रेन्युल की फिटनेस का उपयोग अनुमान के रूप में किया जाता है। अन्यथा, उस व्यक्ति को एक नए फजी ग्रेन्युल के रूप में पूल में जोड़ा जाता है। पूल का आकार और साथ ही प्रत्येक ग्रेन्युल का प्रभाव त्रिज्या अनुकूली है और प्रत्येक ग्रेन्युल की उपयोगिता और समग्र जनसंख्या फिटनेस के आधार पर बढ़ेगा/घटेगा। कम फ़ंक्शन मूल्यांकन को प्रोत्साहित करने के लिए, प्रत्येक ग्रेन्युल के प्रभाव का दायरा शुरू में बड़ा होता है और विकास के बाद के चरणों में धीरे-धीरे कम हो जाता है। यह अधिक सटीक फिटनेस मूल्यांकन को प्रोत्साहित करता है जब प्रतिस्पर्धा अधिक समान और अभिसरण समाधानों के बीच भयंकर होती है। इसके अलावा, पूल को बहुत बड़ा होने से रोकने के लिए, उपयोग नहीं किए जाने वाले दानों को धीरे-धीरे हटा दिया जाता है।

इसके अतिरिक्त, एएफएफजी मानव अनुभूति की दो विशेषताओं को प्रतिबिंबित करता है: (ए) ग्रैन्युलैरिटी (बी) समानता विश्लेषण। यह ग्रैनुलेशन-आधारित फिटनेस सन्निकटन योजना कई संरचनात्मक अनुकूलन समस्याओं के अलावा डिजिटल वॉटरमार्किंग से वॉटरमार्क का पता लगाने सहित विभिन्न इंजीनियरिंग अनुकूलन समस्याओं को हल करने के लिए लागू की जाती है।

यह भी देखें

संदर्भ

  1. Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9:3–12, 2005
  2. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011
  3. Y. Jin, H. Wang, T. Chugh, D. Guo and K. Miettinen. Data-driven evolutionary optimization -- An Overview and Case Studies or black-box optimization. 23(3):442-459, 2019
  4. Manzoni, L.; Papetti, D.M.; Cazzaniga, P.; Spolaor, S.; Mauri, G.; Besozzi, D.; Nobile, M.S. Surfing on Fitness Landscapes: A Boost on Optimization by Fourier Surrogate Modeling. Entropy 2020, 22, 285.