घातीय योग

From Vigyanwiki
Revision as of 09:13, 14 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Finite sum formed using the exponential function}} गणित में, एक घातीय योग एक परिमित फूरियर...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक घातीय योग एक परिमित फूरियर श्रृंखला (यानी एक त्रिकोणमितीय बहुपद) हो सकता है, या घातीय फ़ंक्शन का उपयोग करके गठित अन्य परिमित योग हो सकता है, जिसे आमतौर पर फ़ंक्शन के माध्यम से व्यक्त किया जाता है

इसलिए, एक विशिष्ट घातीय योग का रूप ले सकता है

वास्तविक संख्याओं x के एक सीमित अनुक्रम का सारांशn.

निरूपण

यदि हम कुछ वास्तविक गुणांकों की अनुमति देते हैंn, फॉर्म प्राप्त करने के लिए

यह सम्मिश्र संख्याओं वाले घातांकों को अनुमति देने के समान है। दोनों रूप अनुप्रयोगों में निश्चित रूप से उपयोगी हैं। बीसवीं सदी के विश्लेषणात्मक संख्या सिद्धांत का एक बड़ा हिस्सा इन राशियों के लिए अच्छे अनुमान खोजने के लिए समर्पित था, एक प्रवृत्ति जो डायोफैंटाइन सन्निकटन में हरमन वेइल के बुनियादी काम द्वारा शुरू की गई थी।

अनुमान

विषय का मुख्य जोर एक योग पर है

शब्दों की संख्या N द्वारा तुच्छ रूप से अनुमान लगाया जाता है। यानी पूर्ण मूल्य

त्रिभुज असमानता द्वारा, चूँकि प्रत्येक योग का निरपेक्ष मान 1 है। अनुप्रयोगों में कोई बेहतर करना चाहेगा। इसमें यह साबित करना शामिल है कि कुछ रद्दीकरण होता है, या दूसरे शब्दों में, इकाई चक्र पर जटिल संख्याओं का यह योग समान पैरामीटर वाले सभी संख्याओं का नहीं है। सबसे अच्छी बात जिसकी आशा करना उचित है वह है फॉर्म का अनुमान

जो दर्शाता है, बड़े O नोटेशन में निहित स्थिरांक तक, कि योग दो आयामों में एक यादृच्छिक चलने जैसा दिखता है।

ऐसा अनुमान आदर्श माना जा सकता है; यह कई प्रमुख समस्याओं और अनुमानों में अप्राप्य है

का उपयोग करना होगा, जहां ओ(एन) फ़ंक्शन तुच्छ अनुमान पर केवल एक छोटी बचत का प्रतिनिधित्व करता है। उदाहरण के लिए, एक सामान्य 'छोटी बचत' लॉग (एन) का एक कारक हो सकती है। यहां तक ​​​​कि सही दिशा में इस तरह के एक मामूली-प्रतीत परिणाम को प्रारंभिक अनुक्रम x की संरचना में वापस भेजा जाना चाहिएn, यादृच्छिकता की डिग्री दिखाने के लिए। इसमें शामिल तकनीकें सरल और सूक्ष्म हैं।

वेइल द्वारा 'वेइल डिफरेंसिंग' के एक प्रकार की जांच की गई जिसमें एक घातांकीय योग शामिल है

पहले वेइल द्वारा स्वयं अध्ययन किया गया था, उन्होंने योग को मूल्य के रूप में व्यक्त करने के लिए एक विधि विकसित की , जहां 'जी' को भागों द्वारा योग के माध्यम से प्राप्त डायसन समीकरण के समान एक रैखिक अंतर समीकरण के माध्यम से परिभाषित किया जा सकता है।

इतिहास

यदि योग रूप का है

जहां ƒ एक सुचारु कार्य है, हम श्रृंखला को एक अभिन्न में बदलने के लिए यूलर-मैकलॉरिन सूत्र का उपयोग कर सकते हैं, साथ ही एस (एक्स) के डेरिवेटिव से जुड़े कुछ सुधार भी कर सकते हैं, फिर ए के बड़े मूल्यों के लिए आप अभिन्न की गणना करने के लिए स्थिर चरण विधि का उपयोग कर सकते हैं और राशि का अनुमानित मूल्यांकन दें। विषय में प्रमुख प्रगति वान डेर कॉरपुट की विधि (सी. 1920) थी, जो स्थिर चरण के सिद्धांत से संबंधित थी, और बाद में विनोग्रादोव मेटनोद (सी.1930) थी।

बड़ी छलनी विधि (सी.1960), कई शोधकर्ताओं का काम, एक अपेक्षाकृत पारदर्शी सामान्य सिद्धांत है; लेकिन किसी भी विधि का सामान्य अनुप्रयोग नहीं है।

घातांकीय योग के प्रकार

विशेष समस्याओं को तैयार करने में कई प्रकार के योगों का उपयोग किया जाता है; अनुप्रयोगों के लिए आमतौर पर कुछ ज्ञात प्रकार की कमी की आवश्यकता होती है, अक्सर सरल हेरफेर द्वारा। गुणांकों को हटाने के लिए आंशिक योग का उपयोग किया जा सकता हैn, कई मामलों में।

एक बुनियादी अंतर एक पूर्ण घातीय योग के बीच है, जो आम तौर पर सभी अवशेष वर्गों मॉड्यूलर अंकगणित कुछ पूर्णांक एन (या अधिक सामान्य परिमित अंगूठी) पर एक योग है, और एक अपूर्ण घातीय योग जहां योग की सीमा होती है कुछ असमानता (गणित) द्वारा प्रतिबंधित है। पूर्ण घातीय योगों के उदाहरण गॉस योग और क्लोस्टरमैन योग हैं; ये कुछ अर्थों में क्रमशः गामा फ़ंक्शन और कुछ प्रकार के बेसेल फ़ंक्शन के परिमित क्षेत्र या परिमित रिंग एनालॉग हैं, और इनमें कई 'संरचनात्मक' गुण हैं। अपूर्ण योग का एक उदाहरण द्विघात गॉस योग का आंशिक योग है (वास्तव में, कार्ल फ्रेडरिक गॉस द्वारा जांच किया गया मामला)। यहां अवशेष वर्गों के पूरे सेट की तुलना में छोटी सीमाओं पर योगों के लिए अच्छे अनुमान हैं, क्योंकि, ज्यामितीय शब्दों में, आंशिक योग एक कॉर्नू सर्पिल का अनुमान लगाते हैं; इसका तात्पर्य बड़े पैमाने पर रद्दीकरण से है।

सिद्धांत में सहायक प्रकार के योग होते हैं, उदाहरण के लिए वर्ण योग; हेरोल्ड डेवनपोर्ट की थीसिस पर वापस जा रहे हैं। वेइल अनुमानों में बहुपद स्थितियों (यानी, एक सीमित क्षेत्र में बीजगणितीय विविधता के साथ) द्वारा प्रतिबंधित डोमेन के साथ रकम को पूरा करने के लिए प्रमुख अनुप्रयोग थे।

वेइल रकम

घातीय योग के सबसे सामान्य प्रकारों में से एक वेइल योग है, जिसका घातांक 2πif(n) है, जहां f एक काफी सामान्य वास्तविक-मूल्यवान सुचारू फ़ंक्शन है। ये मूल्यों के वितरण में शामिल राशियाँ हैं

ƒ(एन) मोडुलो 1,

वेइल के समान वितरण मानदंड के अनुसार। एक बुनियादी प्रगति थी वेइल की असमानता (संख्या सिद्धांत)|वेइल की असमानता, ऐसे योगों के लिए, बहुपद एफ के लिए।

घातांक युग्मों का एक सामान्य सिद्धांत है, जो अनुमान तैयार करता है। एक महत्वपूर्ण मामला वह है जहां रीमैन ज़ेटा फ़ंक्शन के संबंध में एफ लघुगणक है। समवितरण प्रमेय भी देखें।[1]


उदाहरण: द्विघात गॉस योग

मान लीजिए p एक विषम अभाज्य है और मान लीजिए . तब द्विघात गॉस योग किसके द्वारा दिया जाता है?

जहां वर्गमूल को सकारात्मक माना जाता है।

यह रद्द करने की आदर्श डिग्री है जिसकी कोई भी राशि की संरचना के पूर्व ज्ञान के बिना उम्मीद कर सकता है, क्योंकि यह यादृच्छिक चलने के स्केलिंग से मेल खाता है।

सांख्यिकीय मॉडल

समय के साथ किसी पदार्थ की सांद्रता का वर्णन करने के लिए घातांक का योग फार्माकोकाइनेटिक्स (सामान्य रूप से रासायनिक कैनेटीक्स) में एक उपयोगी मॉडल है। घातीय शब्द प्रथम-क्रम प्रतिक्रियाओं से मेल खाते हैं, जो फार्माकोलॉजी में मॉडल किए गए प्रसार डिब्बों की संख्या से मेल खाते हैं।[2][3]


सी आल्सो

  • हुआ'स लेम्मा

संदर्भ

  1. Montgomery (1994) p.39
  2. Hughes, JH; Upton, RN; Reuter, SE; Phelps, MA; Foster, DJR (November 2019). "गैर-कम्पार्टमेंटल विश्लेषण का उपयोग करके फार्माकोकाइनेटिक डेटा के वक्र के तहत क्षेत्र निर्धारित करने के लिए समय के नमूनों का अनुकूलन।". The Journal of Pharmacy and Pharmacology. 71 (11): 1635–1644. doi:10.1111/jphp.13154. PMID 31412422.
  3. Hull, CJ (July 1979). "फार्माकोकाइनेटिक्स और फार्माकोडायनामिक्स।". British Journal of Anaesthesia. 51 (7): 579–94. doi:10.1093/bja/51.7.579. PMID 550900.


अग्रिम पठन

  • Korobov, N.M. (1992). Exponential sums and their applications. Mathematics and Its Applications. Soviet Series. Vol. 80. Translated from the Russian by Yu. N. Shakhov. Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-1647-9. Zbl 0754.11022.


बाहरी संबंध