दो घनों का योग

From Vigyanwiki
दो घनों के योग और अंतर के सूत्रों का दृश्य प्रमाण

गणित में, दो घनों का योग घन संख्या होती है जिसे अन्य घन संख्या में जोड़ा जाता है।

गुणनखंडन

इस प्रकार से घनों के प्रत्येक योग को पहचान (गणित) के अनुसार गुणनखंडित किया जा सकता है

प्रारंभिक बीजगणित में.

द्विपद संख्याएँ इस द्विपद संख्या का सामान्य हैं या उच्च विषम घातों का गुणनखंडन का सामान्य रूप हैं।

स्मरणीय एसओएपी, जिसका अर्थ है "समान, विपरीत, सदैव धनात्मक ", का उपयोग कभी-कभी घनों का गुणनखंड करते समय जोड़ और घटाव प्रतीकों के सही स्थान को याद रखने के लिए किया जाता है।[1] गुणनखंडन के लिए इस पद्धति को प्रयुक्त करते समय, समान प्रथम पद को मूल अभिव्यक्ति के समान चिह्न के साथ दर्शाता है, इस प्रकार से विपरीत दूसरे पद को मूल अभिव्यक्ति के विपरीत चिह्न के साथ दर्शाता है, और सदैव धनात्मक तृतीय पद को दर्शाता है और सदैव धनात्मक होता है।

सोप विधि
इनपुट आउटपुट अभिन्न विपरीत और सदैव धनात्मक

प्रमाण

अभिव्यक्ति से प्रारंभ करते हुए, a और b से गुणा किया जाता है

a और b को वितरित करके , हम पाते हैं

और समान नियम को निरस्त करने से, हमें मिलता है

फ़र्मेट का अंतिम प्रमेय

घातांक 3 के मामले में फ़र्मेट का अंतिम प्रमेय बताता है कि दो गैर-शून्य पूर्णांक घनों के योग का परिणाम गैर-शून्य पूर्णांक घन नहीं होता है। प्रतिपादक 3 मामले का पहला रिकॉर्ड किया गया प्रमाण लियोनहार्ड यूलर द्वारा दिया गया था।[2]

टैक्सीकैब नंबर कैबटैक्सी संख्या

टैक्सीकैब संख्याएँ वे संख्याएँ हैं जिन्हें n अलग-अलग तरीकों से दो धनात्मक पूर्णांक घनों के योग के रूप में व्यक्त किया जा सकता है। Ta(1) के बाद सबसे छोटी टैक्सीकैब संख्या 1729 है,[3] इसके रूप में बताया गया

या

3 अलग-अलग तरीकों से व्यक्त की गई सबसे छोटी टैक्सीकैब संख्या 87,539,319 है, जिसे इस प्रकार व्यक्त किया गया है

, या

कैबटैक्सी संख्याएँ वे संख्याएँ हैं जिन्हें दो धनात्मक या ऋणात्मक पूर्णांकों या 0 घनों के योग के रूप में n तरीकों से व्यक्त किया जा सकता है। कैबटैक्सी(1) के बाद सबसे छोटी कैबटैक्सी संख्या 91 है,[4] इसके रूप में बताया गया:

या

3 अलग-अलग तरीकों से व्यक्त की गई सबसे छोटी कैबटैक्सी संख्या 4104 है,[5] इसके रूप में बताया गया

, या

यह भी देखें

संदर्भ

  1. Kropko, Jonathan (2016). सामाजिक वैज्ञानिकों के लिए गणित. Los Angeles, LA: Sage. p. 30. ISBN 9781506304212.
  2. Dickson, L. E. (1917). "फ़र्मेट का अंतिम प्रमेय और बीजगणितीय संख्याओं के सिद्धांत की उत्पत्ति और प्रकृति". Annals of Mathematics. 18 (4): 161–187. doi:10.2307/2007234. ISSN 0003-486X.
  3. "A001235 - OEIS". oeis.org. Retrieved 2023-01-04.
  4. Schumer, Peter (2008). "दो घनों का योग दो अलग-अलग तरीकों से". Math Horizons. pp. 8–9. Retrieved 2023-05-01.
  5. Silverman, Joseph H. (1993). "टैक्सीकैब और दो घनों का योग". The American Mathematical Monthly. 100 (4): 331–340. doi:10.2307/2324954. ISSN 0002-9890.

अग्रिम पठन