परिमित अंतर गुणांक

From Vigyanwiki
Revision as of 15:33, 25 July 2023 by alpha>Sugatha

गणित में, किसी व्युत्पन्न को सटीकता के मनमाने क्रम में अनुमानित करने के लिए, परिमित अंतर का उपयोग करना संभव है। एक सीमित अंतर केंद्रीय, आगे या पीछे हो सकता है।

केंद्रीय परिमित अंतर

इस तालिका में सटीकता के कई आदेशों और समान ग्रिड रिक्ति के साथ केंद्रीय अंतर के गुणांक शामिल हैं:[1]

Derivative Accuracy −5 −4 −3 −2 −1 0 1 2 3 4 5
1 2 −1/2 0 1/2
4 1/12 −2/3 0 2/3 −1/12
6 −1/60 3/20 −3/4 0 3/4 −3/20 1/60
8 1/280 −4/105 1/5 −4/5 0 4/5 −1/5 4/105 −1/280
2 2 1 −2 1
4 −1/12 4/3 −5/2 4/3 −1/12
6 1/90 −3/20 3/2 −49/18 3/2 −3/20 1/90
8 −1/560 8/315 −1/5 8/5 −205/72 8/5 −1/5 8/315 −1/560
3 2 −1/2 1 0 −1 1/2
4 1/8 −1 13/8 0 −13/8 1 −1/8
6 −7/240 3/10 −169/120 61/30 0 −61/30 169/120 −3/10 7/240
4 2 1 −4 6 −4 1
4 −1/6 2 −13/2 28/3 −13/2 2 −1/6
6 7/240 −2/5 169/60 −122/15 91/8 −122/15 169/60 −2/5 7/240
5 2 −1/2 2 −5/2 0 5/2 −2 1/2
4 1/6 −3/2 13/3 −29/6 0 29/6 −13/3 3/2 −1/6
6 −13/288 19/36 −87/32 13/2 −323/48 0 323/48 −13/2 87/32 −19/36 13/288
6 2 1 −6 15 −20 15 −6 1
4 −1/4 3 −13 29 −75/2 29 −13 3 −1/4
6 13/240 −19/24 87/16 −39/2 323/8 −1023/20 323/8 −39/2 87/16 −19/24 13/240

उदाहरण के लिए, दूसरे क्रम की सटीकता वाला तीसरा व्युत्पन्न है

कहाँ प्रत्येक परिमित अंतर अंतराल के बीच एक समान ग्रिड रिक्ति का प्रतिनिधित्व करता है, और .

के लिए -वें सटीकता के साथ व्युत्पन्न , वहाँ हैं केंद्रीय गुणांक . ये रैखिक समीकरण प्रणाली के समाधान द्वारा दिए गए हैं

जहां दाहिनी ओर एकमात्र गैर-शून्य मान है -फेंकना।

एक आयाम में मनमाने व्युत्पन्न और सटीकता क्रम के परिमित अंतर गुणांक की गणना के लिए एक खुला स्रोत कार्यान्वयन उपलब्ध है।[2] लैग्रेंज बहुपद का सिद्धांत परिमित अंतर गुणांक के लिए स्पष्ट सूत्र प्रदान करता है।[3] पहले छह डेरिवेटिव के लिए हमारे पास निम्नलिखित हैं:

Derivative
1
2
3
4
5
6

कहाँ हार्मोनिक संख्या हैं.

आगे परिमित अंतर

इस तालिका में सटीकता के कई आदेशों और समान ग्रिड रिक्ति के साथ आगे के अंतर के गुणांक शामिल हैं:[1]

Derivative Accuracy 0 1 2 3 4 5 6 7 8
1 1 −1 1              
2 −3/2 2 −1/2            
3 −11/6 3 −3/2 1/3          
4 −25/12 4 −3 4/3 −1/4        
5 −137/60 5 −5 10/3 −5/4 1/5      
6 −49/20 6 −15/2 20/3 −15/4 6/5 −1/6    
2 1 1 −2 1            
2 2 −5 4 −1          
3 35/12 −26/3 19/2 −14/3 11/12        
4 15/4 −77/6 107/6 −13 61/12 −5/6      
5 203/45 −87/5 117/4 −254/9 33/2 −27/5 137/180    
6 469/90 −223/10 879/20 −949/18 41 −201/10 1019/180 −7/10  
3 1 −1 3 −3 1          
2 −5/2 9 −12 7 −3/2        
3 −17/4 71/4 −59/2 49/2 −41/4 7/4      
4 −49/8 29 −461/8 62 −307/8 13 −15/8    
5 −967/120 638/15 −3929/40 389/3 −2545/24 268/5 −1849/120 29/15  
6 −801/80 349/6 −18353/120 2391/10 −1457/6 4891/30 −561/8 527/30 −469/240
4 1 1 −4 6 −4 1        
2 3 −14 26 −24 11 −2      
3 35/6 −31 137/2 −242/3 107/2 −19 17/6    
4 28/3 −111/2 142 −1219/6 176 −185/2 82/3 −7/2  
5 1069/80 −1316/15 15289/60 −2144/5 10993/24 −4772/15 2803/20 −536/15 967/240

उदाहरण के लिए, पहला व्युत्पन्न तीसरे क्रम की सटीकता के साथ और दूसरा व्युत्पन्न दूसरे क्रम की सटीकता के साथ है

जबकि संबंधित पिछड़े सन्निकटन दिए गए हैं

पिछड़ा परिमित अंतर

आगे वाले अनुमानों से पिछड़े सन्निकटन के गुणांक प्राप्त करने के लिए, पिछले अनुभाग में तालिका में सूचीबद्ध सभी विषम व्युत्पन्नों को विपरीत चिह्न दें, जबकि सम व्युत्पन्नों के लिए चिह्न समान रहते हैं। निम्न तालिका इसे दर्शाती है:[4]

Derivative Accuracy −8 −7 −6 −5 −4 −3 −2 −1 0
1 1               −1 1
2             1/2 −2 3/2
3           −1/3 3/2 −3 11/6
2 1             1 −2 1
2           −1 4 −5 2
3 1           −1 3 −3 1
2         3/2 −7 12 −9 5/2
4 1         1 −4 6 −4 1
2       −2 11 −24 26 −14 3

मनमाना स्टेंसिल बिंदु

किसी दिए गए मनमाने स्टेंसिल बिंदुओं के लिए लम्बाई का डेरिवेटिव के क्रम के साथ रेखीय समीकरणों को हल करके परिमित अंतर गुणांक प्राप्त किया जा सकता है [5]

कहाँ क्रोनकर डेल्टा है, एक के बराबर यदि , और अन्यथा शून्य.

उदाहरण, के लिए , भेदभाव का क्रम :

सन्निकटन की सटीकता का क्रम सामान्य रूप ले लेता है [citation needed].

यह भी देखें

संदर्भ

  1. 1.0 1.1 Fornberg, Bengt (1988), "Generation of Finite Difference Formulas on Arbitrarily Spaced Grids", Mathematics of Computation, 51 (184): 699–706, doi:10.1090/S0025-5718-1988-0935077-0, ISSN 0025-5718.
  2. "आयामों की मनमानी संख्या में परिमित अंतर संख्यात्मक व्युत्पन्न के लिए एक पायथन पैकेज।". GitHub. 14 October 2021.
  3. "परिमित अंतर गुणांक". StackExchange. 5 June 2023.
  4. Taylor, Cameron (12 December 2019). "परिमित अंतर गुणांक कैलकुलेटर". MIT.
  5. "Finite Difference Coefficients Calculator".