गुणक आदर्श

From Vigyanwiki
Revision as of 17:12, 22 July 2023 by alpha>Ajays

क्रमविनिमेय बीजगणित में, समष्टि संख्या बीजगणितीय विविधता और वास्तविक संख्या सी पर आदर्श (रिंग सिद्धांत) के शीफ (गणित) से जुड़े गुणक आदर्श में (स्थानीय रूप से) फलन एच सम्मिलित होते हैं जैसे कि

स्थानीय रूप से एकीकृत फलन है, जहां fi आदर्श के स्थानीय जनरेटर का सीमित समुच्चय हैं। गुणक आदर्शों को स्वतंत्र रूप से प्रस्तुत किया गया था Nadel (1989) (जिन्होंने आदर्शों के अतिरिक्त समष्टि विविधताओं पर काम किया) और Lipman (1993), जिन्होंने इन्हें संयुक्त आदर्श कहा।

सर्वेक्षण लेखों में गुणक आदर्शों पर चर्चा की गई है Blickle & Lazarsfeld (2004), Siu (2005), और Lazarsfeld (2009).

बीजगणितीय ज्यामिति

बीजगणितीय ज्यामिति में, प्रभावी का गुणक आदर्श -विभाजक (बीजगणितीय ज्यामिति) डी के भिन्नात्मक भागों से आने वाली विलक्षणताओं को मापता है। गुणक आदर्शों को अधिकांशतः कोडैरा लुप्त प्रमेय और कावामाता-विहवेग लुप्त प्रमेय जैसे लुप्त प्रमेयों के साथ मिलकर प्रयुक्त किया जाता है।

मान लीजिए कि X सहज समष्टि प्रकार है और D प्रभावी प्रकार है -इस पर विभाजक. होने देना D का लॉग रिज़ॉल्यूशन हो (उदाहरण के लिए, हिरोनका का रिज़ॉल्यूशन)। D का गुणक आदर्श है

कहाँ सापेक्ष विहित भाजक है: . यह का आदर्श पूल है . यदि D अभिन्न है, तब .

यह भी देखें

संदर्भ