मानक भाग फ़ंक्शन

From Vigyanwiki

मानक भाग फलन सीमित (परिमित) गैरमनाक विश्लेषण में अतियथार्थवादी संख्याओं से वास्तविक संख्याओं तक का फलन है। जिससे संक्षेप में, मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक मानक भाग फलन तक पूर्णांकित करता है। यह ऐसे हर अतियथार्थ से संबद्ध है , अद्वितीय यथार्थ इस प्रकार इसके असीम रूप से निकट होता है |, अर्थात अतिसूक्ष्म है.जिससे यह पियरे डी फ़र्मेट द्वारा प्रस्तुत पर्याप्तता की ऐतिहासिक अवधारणा का गणितीय कार्यान्वयन है,[1] मानक भाग फलन इसके साथ ही लाइबनिट्स का समरूपता का पारलौकिक नियम होता है |

इसलिए यह मानक भाग फलन को सबसे पहले अब्राहम रॉबिन्सन द्वारा परिभाषित किया गया था इस प्रकार जिन्होंने अंकन का उपयोग किया था अतियथार्थवादी के मानक भाग के लिए (रॉबिन्सन 1974 मैं देखे गए है )। इस प्रकार यह अवधारणा गैरमानक विश्लेषण में कैलकुलस की अवधारणाओं पर होती है | जैसे यह निरंतरता, व्युत्पन्न और अभिन्न को परिभाषित करने में महत्वपूर्ण भूमिका निभाती है। इस प्रकार मानक भाग फलन परिमित सिद्धांत अतिसूक्ष्म के साथ गणनाओं का कठोर औपचारिकीकरण है। जिसके x के मानक भाग को कभी-कभी इसकी 'छाया' भी कहा जाता है।

परिभाषा

मानक भाग फलन परिमित अतियथार्थवादी को निकटतम वास्तविक संख्या तक पूर्णांकित करता है। अत्यणु माइक्रोस्कोप का उपयोग मानक वास्तविक के अत्यणु पड़ोस को देखने के लिए किया जाता है।

मानक भाग फलन सीमित गैरमानक विश्लेषण मुख्य रूप से जोड़ी से संबंधित है , जहां अतियथार्थवादी संख्याएं हैं |इस प्रकार वास्तविकताओं का क्रमबद्ध मैदान विस्तार होता है |इसलिए , और वास्तविक के अतिरिक्त, अनन्तिम भी सम्मिलित हैं। जिससे अतियथार्थवादी लाइन में प्रत्येक वास्तविक संख्या में अतियथार्थवादी्स की संख्याओं का संग्रह होता है (जिसे इकाई (गैरमानक विश्लेषण कहा जाता है),जिससे या प्रभामंडल कहा जाता है)। मानक भाग फलन विकट से संबद्ध होता है: यह परिमित अतियथार्थवादी संख्या x, अद्वितीय मानक वास्तविक संख्या x0 वह इसके असीम रूप से निकट है। इस प्रकार यह रिश्ते को प्रतीकात्मक रूप से लिखकर व्यक्त किया जाता है

मानक भाग फलन किसी भी अतिसूक्ष्म का मानक भाग 0 है। इस प्रकार यदि N अनन्त अतिप्राकृतिक है, तो 1/N अतिसूक्ष्म है, और st(1/N) = 0.

यदि अतियथार्थवादी कॉची अनुक्रम द्वारा दर्शाया गया है फिर, अल्ट्रापावर निर्माण में

अधिक सामान्यतः, प्रत्येक परिमित उपसमुच्चय पर डेडेकाइंड कट को परिभाषित करता है (कुल आदेश के माध्यम से ) और संगत वास्तविक संख्या यू का मानक भाग है।

आंतरिक नहीं

मानक भाग फलन st को आंतरिक सेट द्वारा परिभाषित नहीं किया गया है। इसे समझाने के कई विधि हैं। संभवतः सबसे सरल यह है कि इसका डोमेन एल, जो सीमित (अर्थात परिमित) अतियथार्थवादी का संग्रह है, आंतरिक सेट नहीं है। अर्थात्, चूँकि L घिरा हुआ है (उदाहरण के लिए, किसी अनंत अति प्राकृतिक द्वारा), यदि L आंतरिक होता तो L की न्यूनतम ऊपरी सीमा होती है, किन्तु L की न्यूनतम ऊपरी सीमा नहीं होती है। वैकल्पिक रूप से, st की सीमा है , जो आंतरिक नहीं है; वास्तव में प्रत्येक आंतरिक सेट वह उपसमुच्चय है आवश्यक रूप से परिमित है, (गोल्डब्लैट, 1998) मैं देखे गए परिणाम के अनुसार हुआ है |

अनुप्रयोग

मानक भाग फलन सीमित कैलकुलस की सभी पारंपरिक धारणाओं को मानक भाग फलन के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है।

व्युत्पन्न

मानक भाग फलन का उपयोग किसी फलन f के व्युत्पन्न को परिभाषित करने के लिए किया जाता है। यदि f वास्तविक फलन है, और h अतिसूक्ष्म है, और यदि f′(x) उपस्थित है, तो

वैकल्पिक रूप से, यदि , कोई अतिसूक्ष्म वृद्धि लेता है , और संगत गणना करता है . अनुपात बनता है . फिर व्युत्पन्न को अनुपात के मानक भाग के रूप में परिभाषित किया गया है:

अभिन्न

फलन दिया गया पर , अभिन्न को परिभाषित करता है अनंत अवशेष योग के मानक भाग के रूप में जब का मूल्य अंतराल [ए,बी] के अतिपरिमित सेट विभाजन का शोषण करते हुए, इसे असीम रूप से छोटा माना जाता है।

सीमा

क्रम दिया गया है , इसकी सीमा परिभाषित की गई है कहाँ अनंत सूचकांक है. यहां कहा जाता है कि यदि मानक भाग समान है, तो चुने गए अनंत सूचकांक की परवाह किए बिना सीमा उपस्थित है।

निरंतरता

मानक भाग फलन सीमित वास्तविक कार्य वास्तविक बिंदु पर निरंतर है यदि रचना के प्रभामंडल (गणित) पर स्थिर है . अधिक विवरण के लिए सूक्ष्म निरंतरता देखें गए है।

यह भी देखें

टिप्पणियाँ

  1. Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science. doi:10.1007/s10699-011-9223-1 [1] See arxiv. The authors refer to the Fermat-Robinson standard part.

संदर्भ