समसंख्याकता

From Vigyanwiki

गणित में, दो समुच्चय(गणित) या वर्ग (गणित) A और B 'समतुल्य' हैं यदि उनके बीच एक-से-एक पत्राचार (या आक्षेप) सम्मलित है, अर्थात, यदि A से B तक कोई फलन (गणित) सम्मलित है जैसे किBके प्रत्येक तत्व (गणित) के लिए, A के साथ A का बिल्कुल एक तत्व X है f(x) = y.[1] कहा जाता है कि समसंख्य समुच्चयों में समान प्रमुखता (तत्वों की संख्या) होती है।[2] गणनांक के अध्ययन को अधिकांशत: समसंख्याकता (संख्या की समानता) कहा जाता है। इसके स्थान पर कभी-कभी तुल्यता (समानता-की-शक्ति) और समशक्ति (समानता-की-शक्ति) शब्द का उपयोग किया जाता है।

समसंख्या में समतुल्य संबंध के विशिष्ट गुण होते हैं।[1]यह कथन कि दो समुच्चय A और B समसंख्यक हैं, सामान्यत: दर्शाया जाता है

या , या

द्विभाजन का उपयोग करके समसंकुचितता की परिभाषा को परिमित और अनंत दोनों समुच्चयों पर लागू किया जा सकता है, और यह बताने की अनुमति देता है कि क्या दो समुच्चयों का आकार समान है, भले ही वे अनंत हों। समुच्चयसिद्धांत के आविष्कारक जॉर्ज कैंटर ने 1874 में दिखाया कि एक से अधिक प्रकार की अनंतता है, विशेष रूप से सभी प्राकृतिक संख्याओं का संग्रह और सभी वास्तविक संख्याओं का संग्रह, जबकि दोनों अनंत हैं, समसंख्यक नहीं हैं (कैंटर की पहली अगणनीयता देखें)। अपने विवादास्पद 1878 के पेपर में, कैंटर ने स्पष्ट रूप से समुच्चय की शक्ति की धारणा को परिभाषित किया और इसका उपयोग यह सिद्ध करने के लिए किया कि सभी प्राकृतिक संख्याओं का समुच्चय और सभी तर्कसंगत संख्याओं का समुच्चय समतुल्य है (एक उदाहरण जहां एक अनंत समुच्चय का उचित उपसमुच्चय समतुल्य है) मूल समुच्चय, और यह कि वास्तविक संख्याओं की प्रतियों की गणनीय अनंत संख्या का कार्तीय उत्पाद भी वास्तविक संख्याओं की एक प्रति के बराबर होता है।

1891 से कैंटर के प्रमेय का तात्पर्य है कि कोई भी समुच्चय अपने स्वयं के सत्ता स्थापित (इसके सभी उपसमुच्चयों का समुच्चय) के बराबर नहीं है।[1]यह एकल अनंत समुच्चय से प्रारंभ करके अधिक से अधिक अनंत समुच्चयों की परिभाषा की अनुमति देता है।

यदि पसंद का सिद्धांत कायम रहता है, तो किसी समुच्चय की कार्डिनल संख्या को उस गणनांक की सबसे कम क्रमिक संख्या माना जा सकता है (प्रारंभिक क्रमसूचक देखें)। अन्यथा, इसे (स्कॉट की चाल से) उस प्रमुखता वाले न्यूनतम रैंक के समुच्चय के रूप में माना जा सकता है।[1]

यह कथन कि कोई भी दो समुच्चय या तो समसंख्य हैं या एक की गणनांक दूसरे की तुलना में छोटी है, पसंद के सिद्धांत के बराबर है।[3]


गणनांक

समसंख्य समुच्चयों के बीच एक-से-एक पत्राचार होता है,[4] और कहा जाता है कि उनकी प्रमुखता समान है। समुच्चय X की गणनांक समुच्चय के तत्वों की संख्या का माप है।[1]समसंख्या में समतुल्य संबंध (प्रतिवर्ती संबंध, सममित संबंध और संक्रमणीय संबंध) के विशिष्ट गुण होते हैं:[1] स्वतुल्यता: एक समुच्चय A को देखते हुए, A पर पहचान फलन A से खुद पर एक आक्षेप है, यह दर्शाता है कि प्रत्येक समुच्चय A अपने आप में समतुल्य है: A ~ A.

समरूपता
दो समुच्चय A और B के बीच प्रत्येक आक्षेप के लिए एक व्युत्क्रम फलन सम्मलित है जो B और A के बीच एक आक्षेप है, जिसका अर्थ है कि यदि एक समुच्चयए, समुच्चय B के बराबर है तो B भी A के बराबर है: A ~ B तात्पर्य B ~ A.
परिवर्तनशीलता
दो आक्षेपों के साथ तीन समुच्चयए, B और C दिए गए हैं f : AB और g : BC, फलन संरचना gf इन आक्षेपों में से A से C तक का आक्षेप है, इसलिए यदि A और B समसंख्यक हैं और B और C समसंख्यक हैं तो A और C समसंख्यक हैं: A ~ B और B ~ C एक साथ मतलब A ~ C.

किसी समुच्चय की गणनांक को उसके समतुल्य सभी समुच्चयों के समतुल्य वर्ग के रूप में परिभाषित करने का प्रयास ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत, स्वयंसिद्ध समुच्चय सिद्धांत के मानक रूप में समस्याग्रस्त है, क्योंकि किसी भी गैर-रिक्त समुच्चय का समतुल्य वर्ग बहुत बड़ा होगा एक समुच्चय होना: यह एक उचित वर्ग होगा। ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के ढांचे के अंदर, द्विआधारी संबंध परिभाषा के अनुसार समुच्चय तक ही सीमित हैं (समुच्चय A पर एक द्विआधारी संबंध कार्तीय उत्पाद का एक सबसमुच्चय है) A × A, और ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में सभी समुच्चयों का कोई समुच्चय नहीं है। ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में, किसी समुच्चय की गणनांक को उसके समतुल्य सभी समुच्चयों के समतुल्य वर्ग के रूप में परिभाषित करने के अतिरिक्त, प्रत्येक समतुल्य वर्ग (कार्डिनल असाइनमेंट) के लिए एक प्रतिनिधि (गणित) समुच्चय निर्दिष्ट करने का प्रयास किया जाता है। स्वयंसिद्ध समुच्चय सिद्धांत की कुछ अन्य प्रणालियों में, उदाहरण के लिए वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत और मोर्स-केली समुच्चय सिद्धांत में, संबंधों को वर्ग (गणित) तक बढ़ाया जाता है।

एक समुच्चय A को समुच्चय B की गणनांक से छोटा या उसके बराबर कहा जाता है, यदि A से B तक एक-से-एक फलन (एक इंजेक्शन) सम्मलित है। इसे दर्शाया गया है |A| ≤ |B|. यदि A और B समसंख्यक नहीं हैं, तो A की गणनांक को B की गणनांक से सख्ती से छोटा कहा जाता है। इसे दर्शाया गया है |A| < |B|. यदि पसंद का सिद्धांत मान्य है, तो ट्राइकोटॉमी का नियम कार्डिनल संख्याओं के लिए लागू होता है, जिससे कि कोई भी दो समुच्चय या तो समतुल्य हों, या एक में दूसरे की तुलना में सख्ती से छोटी कार्डिनलिटी हो।[1] कार्डिनल संख्याओं के लिए ट्राइकोटॉमी का नियम भी पसंद के सिद्धांत को दर्शाता है।[3] श्रोडर-बर्नस्टीन प्रमेय बताता है कि कोई भी दो समुच्चय A और B जिसके लिए दो एक-से-एक फलन सम्मलित हैं f : AB और g : BA समसंख्यक हैं: यदि |A| ≤ |B| और |B| ≤ |A|, तब |A| = |B|.[1][3]यह प्रमेय पसंद के सिद्धांत पर निर्भर नहीं करता है।

कैंटर का प्रमेय

कैंटर के प्रमेय का तात्पर्य है कि कोई भी समुच्चय अपने पावर समुच्चय (इसके सभी उपसमुच्चयों का समुच्चय) के बराबर नहीं है।[1] यह अनंत समुच्चयों के लिए भी लागू होता है। विशेष रूप से, गणनीय अनंत समुच्चय का घात समुच्चय एक अनंत समुच्चय है।

सभी प्राकृतिक संख्याओं से युक्त एक अनंत समुच्चय N के अस्तित्व को मानने और किसी दिए गए समुच्चयके पावर समुच्चय के अस्तित्व को मानने से अनुक्रम N, P(N), P(P(N)) की परिभाषा की अनुमति मिलती है। P(P(P(N))), …अनंत समुच्चयों का जहां प्रत्येक समुच्चय अपने पूर्ववर्ती समुच्चय का घात समुच्चय है। कैंटर के प्रमेय के अनुसार, इस क्रम में प्रत्येक समुच्चय की गणनांक सख्ती से उसके पूर्ववर्ती समुच्चय की गणनांक से अधिक होती है, जिससे अधिक से अधिक अनंत समुच्चय बनते हैं।

कैंटर के काम की उनके कुछ समकालीनों द्वारा कड़ी आलोचना की गई, उदाहरण के लिए लियोपोल्ड क्रोनकर ने, जो दृढ़ता से वित्तवाद का पालन करते थे[5] गणित के दर्शन ने इस विचार को खारिज कर दिया कि संख्याएँ एक वास्तविक, पूर्ण समग्रता (एक वास्तविक अनंत) बना सकती हैं। चूंकि, कैंटर के विचारों का दूसरों द्वारा बचाव किया गया, उदाहरण के लिए रिचर्ड डेडेकाइंड द्वारा, और अंततः बड़े पैमाने पर स्वीकार किया गया, डेविड हिल्बर्ट द्वारा दृढ़ता से समर्थन किया गया था। अधिक जानकारी के लिए कैंटर के सिद्धांत पर विवाद देखें।

ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के ढांचे के अंदर, पावर समुच्चय का सिद्धांत किसी भी समुच्चय के पावर समुच्चय के अस्तित्व की गारंटी देता है। इसके अतिरिक्त, अनंत का सिद्धांत कम से कम एक अनंत समुच्चय के अस्तित्व की गारंटी देता है, अर्थात् प्राकृतिक संख्याओं वाला समुच्चय। वैकल्पिक समुच्चय सिद्धांत हैं, उदा. सामान्य समुच्चय सिद्धांत (जीएसटी), क्रिपके-प्लेटक समुच्चय सिद्धांत, और पॉकेट समुच्चय सिद्धांत (पीएसटी), जो जानबूझकर पावर समुच्चय के सिद्धांत और अनंत के सिद्धांत को छोड़ देते हैं और कैंटर द्वारा प्रस्तावित अनंत के अनंत पदानुक्रम की परिभाषा की अनुमति नहीं देते हैं।

समुच्चयN, P(N), P(P(N)), के अनुरूप गणनांक P(P(P(N))), … बेथ संख्या हैं , , , , …, पहले बेथ नंबर के साथ के बराबर होना (एलेफ़ शून्य), किसी भी गणनीय अनंत समुच्चय की गणनांक, और दूसरी बेथ संख्या के बराबर होना , सातत्य की प्रमुखता है।

डेडेकाइंड-अनंत समुच्चय

कुछ अवसरों में, समुच्चय S और उसके उचित उपसमुच्चय का समसंख्यक होना संभव है। उदाहरण के लिए, सम प्राकृत संख्याओं का समुच्चय सभी प्राकृत संख्याओं के समुच्चय के बराबर होता है। एक समुच्चय जो स्वयं के उचित उपसमुच्चय के बराबर होता है उसे डेडेकाइंड-अनंत कहा जाता है।[1][3]

गणनीय विकल्प का सिद्धांत (ACω), पसंद के सिद्धांत (AC) का एक कमजोर संस्करण, यह दिखाने के लिए आवश्यक है कि एक समुच्चय जो डेडेकाइंड-अनंत नहीं है वह वास्तव में परिमित समुच्चय है। पसंद के स्वयंसिद्ध (जेडएफ) के बिना ज़र्मेलो-फ़्रैन्केल समुच्चय सिद्धांत के सिद्धांत इतने मजबूत नहीं हैं कि यह सिद्ध कर सकें कि प्रत्येक अनंत समुच्चय डेडेकाइंड-अनंत है, लेकिन गणनीय विकल्प के सिद्धांत के साथ ज़र्मेलो-फ़्रैन्केल समुच्चय सिद्धांत के सिद्धांत (ZF + ACω) काफी मजबूत हैं।[6] डेडेकाइंड द्वारा दी गई परिभाषाओं के अतिरिक्त समुच्चयों की परिमितता और अनंतता की अन्य परिभाषाओं के लिए पसंद के स्वयंसिद्ध की आवश्यकता नहीं है।

समुच्चय संचालन के साथ संगतता

समसंख्याकता एक तरह से मूलभूत समुच्चय संचालन के साथ संगत है जो कार्डिनल अंकगणित की परिभाषा की अनुमति देता है।[1] विशेष रूप से, समसंख्यता असंयुक्त संघों के साथ संगत है: चार समुच्चय A, B, C और D दिए गए हैं जिनमें एक ओर A और C हैं और दूसरी ओर B और D जोड़ीवार असंयुक्त हैं और साथ में हैं। A ~ B और C ~ D तब AC ~ BD. इसका उपयोग कार्डिनल जोड़ की परिभाषा को उचित ठहराने के लिए किया जाता है।

इसके अतिरिक्त, समसंख्याकता कार्तीय उत्पादों के साथ संगत है:

  • यदि A ~ B और C ~ D तब A × C ~ B × D.
  • A ×B~B× A
  • (A × B) × C ~A× (B × C)

इन गुणों का उपयोग कार्डिनल गुणन को उचित ठहराने के लिए किया जाता है।

दो समुच्चय X और Y दिए जाने पर, Y से X तक सभी फलन के समुच्चय को XY द्वारा दर्शाया जाता है. तब निम्नलिखित बयान रहेंगे:

  • यदि A~B और C~D है तो AC ~ BD.
  • AB ∪ C ~ AB× ACB और C को अलग करने के लिए।
  • (A × B)C~AC× BC
  • (AB)C~AB×C

इन गुणों का उपयोग कार्डिनल घातांक को उचित ठहराने के लिए किया जाता है।

इसके अतिरिक्त, किसी दिए गए समुच्चय A (A के सभी सबसमुच्चय) का पावर समुच्चय समुच्चय 2A के बराबर है, समुच्चय A से बिल्कुल दो तत्वों वाले समुच्चय तक सभी कार्यों का समुच्चय है।

श्रेणीबद्ध परिभाषा

श्रेणी सिद्धांत में, समुच्चय की श्रेणी, जिसे समुच्चय कहा जाता है, वह श्रेणी (श्रेणी सिद्धांत) है जिसमें ऑब्जेक्ट (श्रेणी सिद्धांत) के रूप में सभी समुच्चयों का संग्रह और रूपवाद (श्रेणी सिद्धांत) के रूप में समुच्चयों के बीच सभी फलन (गणित) का संग्रह सम्मलित होता है, जिसमें फलन संरचना रूपवाद की संरचना के रूप में होती है। समुच्चय में, दो समुच्चयों के बीच एक समरूपता वास्तव में एक आक्षेप है, और दो समुच्चय सटीक रूप से समरूप हैं यदि वे समुच्चय में वस्तुओं के रूप में समाकृतिकता हैं।

यह भी देखें

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Suppes, Patrick (1972) [originally published by D. van Nostrand Company in 1960]. स्वयंसिद्ध समुच्चय सिद्धांत. Dover. ISBN 0486616304.
  2. Enderton, Herbert (1977). समुच्चय सिद्धांत के तत्व. Academic Press Inc. ISBN 0-12-238440-7.
  3. 3.0 3.1 3.2 3.3 Jech, Thomas J. (2008) [Originally published by North–Holland in 1973]. पसंद का सिद्धांत. Dover. ISBN 978-0-486-46624-8.
  4. Weisstein, Eric W. "बराबर". mathworld.wolfram.com (in English). Retrieved 2020-09-05.
  5. Tiles, Mary (2004) [Originally published by Basil Blackwell Ltd. in 1989]. The Philosophy of Set Theory: An Historical Introduction to Cantor's Paradise. Dover. ISBN 978-0486435206.
  6. Herrlich, Horst (2006). पसंद का सिद्धांत. Lecture Notes in Mathematics 1876. Springer-Verlag. ISBN 978-3540309895.