रेंज (कण विकिरण)
This article needs additional citations for verification. (December 2009) (Learn how and when to remove this template message) |
पदार्थ से गुजरते समय, आवेशित कण आयनित होते हैं और इस प्रकार कई चरणों में ऊर्जा खोते हैं, जब तक कि उनकी ऊर्जा (लगभग) शून्य न हो जाए। इस बिंदु की दूरी को कण की सीमा कहा जाता है। सीमा कण के प्रकार, उसकी प्रारंभिक ऊर्जा और उस सामग्री पर निर्भर करती है जिससे वह गुजरता है।
उदाहरण के लिए, यदि सामग्री से गुजरने वाला आयनीकरण कण [[अल्फा कण]] या प्रोटोन की तरह एक सकारात्मक आयन है, तो यह कूलम्ब के नियम के माध्यम से सामग्री में परमाणु इलेक्ट्रॉनों से टकराएगा। चूँकि प्रोटॉन या अल्फा कण का द्रव्यमान इलेक्ट्रॉन के द्रव्यमान से बहुत अधिक है, इसलिए विकिरण के आपतित पथ से कोई महत्वपूर्ण विचलन नहीं होगा और प्रत्येक टक्कर में बहुत कम गतिज ऊर्जा नष्ट होगी। इस प्रकार, ऐसे भारी आयनीकरण विकिरण को रोकने वाले माध्यम या सामग्री के भीतर रुकने के लिए लगातार कई टकरावों की आवश्यकता होगी। किसी इलेक्ट्रॉन से आमने-सामने की टक्कर में अधिकतम ऊर्जा हानि होगी।
चूंकि सकारात्मक आयनों के लिए बड़े कोण का प्रकीर्णन दुर्लभ है, इसलिए उस विकिरण के लिए एक सीमा अच्छी तरह से परिभाषित की जा सकती है, जो उसकी ऊर्जा और आवेश (भौतिकी) के साथ-साथ रोकने वाले माध्यम की आयनीकरण ऊर्जा पर निर्भर करती है। चूँकि इस तरह की अंतःक्रियाओं की प्रकृति सांख्यिकीय होती है, एक विकिरण कण को माध्यम के भीतर आराम करने के लिए आवश्यक टकरावों की संख्या प्रत्येक कण के साथ थोड़ी भिन्न होगी (यानी, कुछ आगे की यात्रा कर सकते हैं और दूसरों की तुलना में कम टकराव से गुजर सकते हैं)। इसलिए, सीमा में एक छोटा सा बदलाव होगा, जिसे स्ट्रगलिंग के रूप में जाना जाता है।
प्रति इकाई दूरी पर ऊर्जा हानि (और इसलिए, आयनीकरण का घनत्व), या रोकने की शक्ति (कण विकिरण) भी कण के प्रकार और ऊर्जा और सामग्री पर निर्भर करती है। आमतौर पर, कण की गति धीमी होने पर प्रति इकाई दूरी पर ऊर्जा हानि बढ़ जाती है। इस तथ्य को बताने वाले वक्र को विलियम हेनरी ब्रैग वक्र कहा जाता है। अंत से कुछ समय पहले, ऊर्जा हानि अधिकतम, ब्रैग पीक से गुजरती है, और फिर शून्य हो जाती है (ब्रैग पीक और स्टॉपिंग पावर (कण विकिरण) में आंकड़े देखें)। विकिरण चिकित्सा के लिए यह तथ्य अत्यंत व्यावहारिक महत्व का है।
परिवेशी वायु में अल्फा कणों की सीमा केवल कई सेंटीमीटर तक होती है; इसलिए इस प्रकार के विकिरण को कागज की एक शीट द्वारा रोका जा सकता है। हालाँकि बीटा विकिरण अल्फा कणों की तुलना में बहुत अधिक बिखरता है, फिर भी एक सीमा को परिभाषित किया जा सकता है; इसमें अक्सर कई सौ सेंटीमीटर हवा होती है।
औसत सीमा की गणना ऊर्जा पर व्युत्क्रम रोक शक्ति को एकीकृत करके की जा सकती है।
स्केलिंग
एक भारी आवेशित कण की सीमा कण के द्रव्यमान और माध्यम के घनत्व के व्युत्क्रमानुपाती होती है, और यह कण के प्रारंभिक वेग का एक कार्य है।
यह भी देखें
- रोकने की शक्ति (कण विकिरण)
- क्षीणन लंबाई
- विकिरण की लंबाई
अग्रिम पठन
- Nakamura, K (1 July 2010). "Review of Particle Physics". Journal of Physics G: Nuclear and Particle Physics. 37 (7A): 1–708. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7A/075021. PMID 10020536.
- Williams, William S. C. (1992). Nuclear and particle physics (Reprinted (with corr.) ed.). Oxford: Clarendon Press. ISBN 978-0-19-852046-7.
- Leo, William R. (1994). Techniques for nuclear and particle physics experiments : a how-to approach (2nd rev. ed.). Berlin: Springer. ISBN 978-3-540-57280-0.