सीव सिद्धांत

From Vigyanwiki
Revision as of 15:02, 7 July 2023 by alpha>Saurabh

छलनी सिद्धांत संख्या सिद्धांत में सामान्य तकनीकों का एक सेट है, जिसे पूर्णांकों के छने हुए सेटों की गणना करने, या अधिक यथार्थवादी रूप से आकार का अनुमान लगाने के लिए डिज़ाइन किया गया है। छने हुए सेट का प्रोटोटाइपिक उदाहरण कुछ निर्धारित सीमा X तक अभाज्य संख्याओं का सेट है। इसके अनुरूप, छलनी का प्रोटोटाइपिक उदाहरण एराटोस्थनीज की छलनी, या अधिक सामान्य पौराणिक छलनी है। इन तरीकों का उपयोग करके अभाज्य संख्याओं पर सीधा हमला जल्द ही त्रुटि शब्दों के संचय के रास्ते में स्पष्ट रूप से दुर्गम बाधाओं तक पहुँच जाता है।बीसवीं शताब्दी में संख्या सिद्धांत के प्रमुख पहलुओं में से एक में, छलनी क्या होनी चाहिए, इसके एक भोले विचार के साथ सामने वाले हमले की कुछ कठिनाइयों से बचने के तरीके खोजे गए थे।

एक सफल तरीका संख्याओं के एक विशिष्ट छने हुए सेट (जैसे कि का सेट) का अनुमान लगाना है अभाज्य संख्याएँ) दूसरे, सरल सेट (उदाहरण के लिए लगभग अभाज्य संख्याओं का सेट) द्वारा, जो आम तौर पर मूल सेट से कुछ बड़ा होता है, और विश्लेषण करने में आसान होता है। अधिक परिष्कृत छलनी भी सीधे सेटों के साथ काम नहीं करती हैं, बल्कि इन सेटों पर सावधानीपूर्वक चुने गए वजन कार्यों के अनुसार उनकी गिनती करती हैं (इन सेटों के कुछ तत्वों को दूसरों की तुलना में अधिक वजन देने के विकल्प)। इसके अलावा, कुछ आधुनिक अनुप्रयोगों में, छलनी का उपयोग छलनी के आकार का अनुमान लगाने के लिए नहीं किया जाता है सेट, लेकिन एक ऐसा फ़ंक्शन तैयार करना जो सेट पर बड़ा हो और उसके बाहर अधिकतर छोटा हो, जबकि विश्लेषण करना आसान हो सेट का संकेतक फ़ंक्शन।

मूल छलनी सिद्धांत

अंकन की जानकारी के लिए अंत में देखें।

हम गैर-ऋणात्मक संख्याओं के कुछ गणनीय अनुक्रम से प्रारंभ करते हैं . सबसे बुनियादी मामले में यह क्रम सिर्फ संकेतक फ़ंक्शन है कुछ सेट का हम छानना चाहते हैं. हालाँकि यह अमूर्तन अधिक सामान्य स्थितियों की अनुमति देता है। इसके बाद हम अभाज्य संख्याओं का एक सामान्य सेट पेश करते हैं जिसे सिफ्टिंग रेंज कहा जाता है और उनके उत्पाद तक एक समारोह के रूप में .

छलनी सिद्धांत का लक्ष्य छनाई कार्य का अनुमान लगाना है

के मामले में यह केवल एक उपसमुच्चय की प्रमुखता को गिनता है संख्याओं का, जो कि अभाज्य गुणनखंडों के सहअभाज्य हैं .

लीजेंड्रे की पहचान

हम लिजेंड्रे की पहचान के साथ छानने के कार्य को फिर से लिख सकते हैं

मोबियस फ़ंक्शन और कुछ फ़ंक्शन का उपयोग करके के तत्वों से प्रेरित है


उदाहरण

होने देना और . मोबियस फ़ंक्शन प्रत्येक प्राइम के लिए नकारात्मक है, इसलिए हमें मिलता है


सर्वांगसमता योग का अनुमान

तब कोई यह मान लेता है के रूप में लिखा जा सकता है

कहाँ एक घनत्व है, जिसका अर्थ है एक गुणात्मक कार्य

और का एक अनुमान है और कुछ शेष पद है. छानने का कार्य बन जाता है

या संक्षेप में

फिर कोई ऊपरी और निचली ऊपरी और निचली सीमाएं ढूंढकर छनाई कार्य का अनुमान लगाने का प्रयास करता है क्रमश: और .

छानने के कार्य का आंशिक योग बारी-बारी से अधिक और कम होता है, इसलिए शेष अवधि बहुत बड़ी होगी। इसे सुधारने का विचार विगो ब्रून का था भार अनुक्रम के साथ छनाई कार्य में प्रतिबंधित मोबियस कार्यों से युक्त। दो उपयुक्त अनुक्रमों का चयन करना और और छनाई कार्यों को निरूपित करना और , कोई मूल स्थानांतरण कार्यों के लिए निचली और ऊपरी सीमाएं प्राप्त कर सकता है

[1]

तब से गुणनात्मक है, कोई पहचान के साथ भी काम कर सकता है

नोटेशन: नोटेशन के संबंध में सावधानी का एक शब्द, साहित्य में अक्सर अनुक्रमों के सेट की पहचान की जाती है सेट के साथ अपने आप। इसका मतलब है कि कोई लिखता है एक अनुक्रम को परिभाषित करने के लिए . साहित्य में भी योग है कभी-कभी इसे प्रमुखता के रूप में जाना जाता है कुछ सेट का , जबकि हमने परिभाषित किया है पहले से ही इस सेट की प्रमुखता होना। हमने इस्तेमाल किया

 अभाज्य संख्याओं के समुच्चय को दर्शाने के लिए और  के सबसे बड़े सामान्य भाजक के लिए  और .

छानने के प्रकार

आधुनिक छलनी में ब्रून छलनी, सेलबर्ग चलनी, तुरान छलनी, [[बड़ी छलनी]], बड़ी छलनी और गोल्डस्टन-पिंटज़-येल्ड्रिम छलनी शामिल हैं। छलनी सिद्धांत का एक मूल उद्देश्य संख्या सिद्धांत में जुड़वां अभाज्य अनुमान जैसे अनुमानों को सिद्ध करने का प्रयास करना था। जबकि छलनी सिद्धांत के मूल व्यापक उद्देश्य अभी भी काफी हद तक अप्राप्त हैं, कुछ आंशिक सफलताएँ मिली हैं, विशेष रूप से अन्य संख्या सैद्धांतिक उपकरणों के संयोजन में। मुख्य आकर्षण में शामिल हैं:

  1. ब्रून का प्रमेय, जो दर्शाता है कि जुड़वां अभाज्य संख्याओं के व्युत्क्रमों का योग अभिसरण करता है (जबकि सभी अभाज्य अभाज्य संख्याओं के व्युत्क्रमों का योग भिन्न होता है);
  2. चेन का प्रमेय, जो दिखाता है कि अनंत रूप से कई अभाज्य संख्याएँ हैं जैसे कि p + 2 या तो एक अभाज्य है या एक अर्ध अभाज्य (दो अभाज्य संख्याओं का गुणनफल); चेन जिन चिकनी का एक करीबी से संबंधित प्रमेय यह दावा करता है कि प्रत्येक पर्याप्त बड़ी सम संख्या एक अभाज्य और दूसरी संख्या का योग है जो या तो एक अभाज्य या अर्धभाज्य है। इन्हें क्रमशः जुड़वां सेमीप्राइम अनुमान और गोल्डबैक अनुमान से लगभग चूक माना जा सकता है।
  3. छलनी सिद्धांत की मौलिक अवधारणा, जो दावा करती है कि यदि कोई एन संख्याओं के एक सेट को छान रहा है, तो वह छलनी में बचे तत्वों की संख्या का सटीक अनुमान लगा सकता है पुनरावृत्तियों ने यह प्रदान किया पर्याप्त रूप से छोटा है (1/10 जैसे अंश यहां काफी विशिष्ट हैं)। यह लेम्मा आमतौर पर अभाज्य संख्याओं को छानने के लिए बहुत कमजोर है (जिसके लिए आम तौर पर कुछ इस तरह की आवश्यकता होती है पुनरावृत्तियाँ), लेकिन लगभग अभाज्य संख्याओं के संबंध में परिणाम प्राप्त करने के लिए पर्याप्त हो सकता है।
  4. फ्रीडलैंडर-इवानीक प्रमेय, जो दावा करता है कि फॉर्म के अनंत रूप से कई अभाज्य हैं .
  5. यी堂झांग एस प्रमेय (Zhang 2014), जो दर्शाता है कि अपरिमित रूप से अनेक अभाज्य अंतराल हैं। मेनार्ड-ताओ प्रमेय (Maynard 2015) झांग के प्रमेय को अभाज्य संख्याओं के मनमाने ढंग से लंबे अनुक्रमों के लिए सामान्यीकृत करता है।

छलनी सिद्धांत की तकनीक

छलनी सिद्धांत की तकनीकें काफी शक्तिशाली हो सकती हैं, लेकिन वे समता समस्या (छलनी सिद्धांत) नामक एक बाधा से सीमित प्रतीत होती हैं, जो मोटे तौर पर यह दावा करती है कि छलनी सिद्धांत विधियों में विषम संख्या में अभाज्य कारकों के साथ संख्याओं के बीच अंतर करने में अत्यधिक कठिनाई होती है। और अभाज्य गुणनखंडों की सम संख्या वाली संख्याएँ। यह समता समस्या अभी भी बहुत अच्छी तरह से समझी नहीं गई है।

संख्या सिद्धांत में अन्य तरीकों की तुलना में, छलनी सिद्धांत तुलनात्मक रूप से प्राथमिक है, इस अर्थ में कि इसे बीजगणितीय संख्या सिद्धांत या विश्लेषणात्मक संख्या सिद्धांत से परिष्कृत अवधारणाओं की आवश्यकता नहीं है। फिर भी, अधिक उन्नत छलनी अभी भी बहुत जटिल और नाजुक हो सकती हैं (विशेषकर जब संख्या सिद्धांत में अन्य गहरी तकनीकों के साथ संयुक्त), और संपूर्ण पाठ्यपुस्तकें संख्या सिद्धांत के इस एकल उपक्षेत्र के लिए समर्पित की गई हैं; एक क्लासिक संदर्भ है (Halberstam & Richert 1974) और एक अधिक आधुनिक पाठ है (Iwaniec & Friedlander 2010).

इस लेख में चर्चा की गई छलनी विधियाँ पूर्णांक गुणनखंडन छलनी विधियों जैसे कि द्विघात छलनी और सामान्य संख्या क्षेत्र चलनी से निकटता से संबंधित नहीं हैं। वे गुणनखंडन विधियाँ एराटोस्थनीज की छलनी के विचार का उपयोग कुशलतापूर्वक यह निर्धारित करने के लिए करती हैं कि संख्याओं की सूची के किन सदस्यों को पूरी तरह से छोटे अभाज्य संख्याओं में विभाजित किया जा सकता है।

साहित्य

बाहरी संबंध


संदर्भ