श्रृंखला जटिल
गणित में, श्रृंखला संकेतन बीजगणितीय संरचना है जिसमें एबेलियन समूहो (या मॉड्यूल (गणित)) का अनुक्रम होता है और इस प्रकार निरंतर समूहों के बीच समूह समरूपता का अनुक्रम होता रहता है और जैसे कि प्रत्येक समरूपता की छवि (गणित) कर्नेल में सम्मिलित होती है यह ( बीजगणित) या अगले श्रंखला की समूह समरूपताएँ श्रृंखला परिसर से जुड़ी संबद्ध इसकी सह-समरूपत होमोलॉजी होती है, जो बताती है कि छवियों को कर्नेल में कैसे सम्मिलित किया जाता है।
कोचेन कॉम्प्लेक्स श्रंखला कॉम्प्लेक्स के समान होता है,और सिवाय इसके कि इसकी समरूपताएं विपरीत दिशा में होती हैं। कोचेन कॉम्प्लेक्स की समरूपता को इसकी सहसंयोजकता भी कहा जाता है।
बीजगणितीय टोपोलॉजी में, टोपोलॉजिकल स्पेस इस श्रृंखला परिसर की समरूपता को X की एकवचन समरूपता कहा जाता है, और यह टोपोलॉजिकल स्पेस का सामान्यतः उपयोग किया जाने वाला टोपोलॉजिकल अपरिवर्तनीय होता है।
श्रृंखला परिसरों का अध्ययन होमोलॉजिकल बीजगणित में किया जाता है, किन्तु गणित के कई क्षेत्रों में भी इसका उपयोग किया जाता है, जिसमें अमूर्त बीजगणित, गैलोइस सिद्धांत, अंतर ज्यामिति और बीजगणितीय ज्यामिति सम्मिलित होते हैं।इस प्रकार इन्हें सामान्यतः एबेलियन श्रेणियों में परिभाषित किया जा सकता है।
परिभाषाएँ
एक शृंखला परिसर एबेलियन समूहों या मॉड्यूल का क्रम इस प्रकार है ..., A0, A1, A2, A3, A4, ... समरूपताओं के द्वारा जुड़ा हुआ होता हैं| (जिसे सीमा ऑपरेटर या अंतर कहा जाता है) और dn : An → An−1, इस प्रकार कि किन्हीं दो निरंतर मानचित्रों की संरचना शून्य मानचित्र होते है। स्पष्ट रूप से, अंतर dn ∘ dn+1 = 0, संतुष्ट करते हैं या सूचकांकों को दबाए जानेपर d2 = 0. संतुष्ट करते हैं। और कॉम्प्लेक्स को इस प्रकार लिखा जा सकता है|
कोचेन कॉम्प्लेक्स श्रृंखला परिसर के लिए दोहरी (श्रेणी सिद्धांत) धारणा है।और इस प्रकार इसमें एबेलियन समूहों या मॉड्यूल का अनुक्रम सम्मिलित है जो ..., A0, A1, A2, A3, A4,... समरूपता से जुड़ा हुआ हैं और यह dn : An → An+1 संतुष्टि देने वाला dn+1 ∘ dn = 0. कोचेन कॉम्प्लेक्स हो सकता हैं और श्रंखला कॉम्प्लेक्स के समान तरीके से लिखा जा सकता है|
किसी भी n में सूचकांक An या An को 'डिग्री' (या 'आयाम') के रूप में जाना जाता हैं| श्रंखला और कोचेन कॉम्प्लेक्स के बीच अंतर यह है कि, श्रंखला कॉम्प्लेक्स में, अंतर आयाम को कम करते हैं, जबकि कोचेन कॉम्प्लेक्स में वे आयाम बढ़ाते हैं। इस प्रकार श्रंखला कॉम्प्लेक्स के लिए सभी अवधारणाएं और परिभाषाएं कोचेन कॉम्प्लेक्स पर प्रयुक्त होती हैं, सिवाय इसके कि वे आयाम के लिए इस अलग सम्मेलन का पालन करेंगे, और अधिकांशतः शब्दों को उपसर्ग सह- दिया जाएगा। और इस लेख में, श्रृंखला परिसरों के लिए परिभाषाएँ तब दी जाएंगी जब भेद की आवश्यकता नहीं होगी।
एक 'परिबद्ध श्रृंखला कॉम्प्लेक्स' वह है जिसमें लगभग या सभी कार्डिनैलिटी An 0 होती है अर्थात्, परिमित संकुल को बायीं और दायीं ओर 0 से बढ़ाया गया है। उदाहरण श्रृंखला संकुल होता है जो परिमित सरल संकुल की सरल समरूपता को परिभाषित करता है। और यदि यह किसी निश्चित डिग्री N से ऊपर के सभी मॉड्यूल 0 हैं, तो श्रंखला कॉम्प्लेक्स ऊपर से घिरा हुआ होता है, और यदि कुछ निश्चित डिग्री N से नीचे के सभी मॉड्यूल 0 होते हैं, तो नीचे से घिरा हुआ होता है। इस प्रकार स्पष्ट रूप से, कॉम्प्लेक्स ऊपर और नीचे दोनों से घिरा हुआ होता है यदि केवल जटिल घिरा हुआ है|
(सह)श्रृंखला परिसर के व्यक्तिगत समूहों के तत्वों को (सह)श्रृंखला कहा जाता है। और d के कर्नेल में तत्वों को ( सीओ)चक्र (या बंद तत्व) कहा जाता है, और इस प्रकार d की छवि में तत्वों को ( सीओ) सीमाएँ (या स्पष्ट तत्व) कहा जाता है। अंतर की परिभाषा से ही, सभी सीमाएँ चक्र होते हैं। अर्थात,n-वें ( सीओ) होमोलॉजी समूह Hn (Hn) डिग्री n में ( सीओ) चक्र मॉड्यूलो (शब्दजाल)या संरचनाओं ( सीओ) सीमाओं का समूह होता है|
स्पष्ट अनुक्रम
एक स्पष्ट अनुक्रम (या स्पष्ट कॉम्प्लेक्स) श्रृंखला कॉम्प्लेक्स होता है जिसके सभी समरूप समूह शून्य होते हैं। इसका कारण यह है कि कॉम्प्लेक्स में सभी बंद तत्व स्पष्ट होते हैं।और संक्षिप्त स्पष्ट अनुक्रम परिबद्ध स्पष्ट अनुक्रम होते है जिसमें केवल समूहAk, Ak+1, Ak+2 शून्येतर हो सकता है. उदाहरण के लिए, निम्नलिखित श्रृंखला परिसर संक्षिप्त स्पष्ट अनुक्रम होता है।
मध्य समूह में, बंद तत्व तत्व pZ हैं; और ये स्पष्ट रूप से इस समूह के स्पष्ट तत्व होते हैं।
श्रृंखला मानचित्र
दो श्रृंखला परिसरों के बीच श्रृंखला मानचित्र f और क्रम है समरूपता का प्रत्येक n के लिए जो दो श्रृंखला परिसरों पर सीमा ऑपरेटरों के साथ आवागमन करता रहता है, इसलिए . इसे निम्नलिखित क्रम विनिमेय चित्र में लिखा गया है।
- श्रृंखला मानचित्र चक्रों को चक्रों और सीमाओं को सीमाओं पर भेजता रहता है, और इस प्रकार समरूपता पर मानचित्र उत्पन्न करता है |
- .
टोपोलॉजिकल स्पेस X और Y के बीच सतत मानचित्र f, X और Y के एकल श्रृंखला परिसरों के बीच श्रृंखला मानचित्र को प्रेरित करता है, और इसलिए जब मानचित्र f X और Y की एकवचन समरूपता f के सामान्य होते हैं, तो होमोलॉजी पर प्रेरित मानचित्र निरंतर मैपिंग की f डिग्री को परिभाषित करता है|
श्रृंखला मानचित्र की अवधारणा श्रृंखला मानचित्र के मानचित्रण शंकु (होमोलॉजिकल बीजगणित) के निर्माण के माध्यम से सीमा तक कम हो जाती है।
श्रृंखला समरूपता
एक श्रृंखला समरूपता दो श्रृंखला मानचित्रों को जोड़ने का विधि प्रदान करती है जो समरूपता समूहों पर ही मानचित्र को प्रेरित करती है, तथापि मानचित्र भिन्न हो सकते हैं। दो श्रृंखला परिसर Aऔर B और दो श्रृंखला मानचित्र दिए गए हैं f, g : A → B, श्रृंखला समरूपता समरूपता का क्रम है hn : An → Bn+1 ऐसा है कि hdA + dBh = f − g. मानचित्रों को इस प्रकार आरेख में लिखा जा सकता है, किन्तुयह आरेख क्रमविनिमेय नहीं है।
- मानचित्र hdA + dBh किसी भी एच के लिए होमोटॉपी पर शून्य मानचित्र को प्रेरित करने के लिए h को आसानी से सत्यापित किया जाता है। यह तुरंत इस प्रकार है कि f और g होमोलॉजी पर ही मानचित्र उत्पन्न करते हैं। का कहना है कि f और g 'श्रृंखला होमोटोपिक' (या बस 'होमोटोपिक') हैं, और यह संपत्ति श्रृंखला मानचित्रों के बीच तुल्यता संबंध को परिभाषित करती है।
मान लीजिए कि X और Y टोपोलॉजिकल स्पेस हैं। एकवचन समरूपता के स्थितियोंमें, निरंतर मानचित्रों f, g : X → Y के बीच समरूपता
f और g के अनुरूप श्रृंखला मानचित्रों के बीच श्रृंखला समरूपता उत्पन्न करता है। इससे पता चलता है कि दो समस्थानिक मानचित्र एकवचन समरूपता पर ही मानचित्र को प्रेरित करते हैं। नाम श्रृंखला होमोटॉपी इस उदाहरण से प्रेरित है।
मान लीजिए कि X और Y टोपोलॉजिकल स्पेस हैं। एकवचन समरूपता के मामले में, निरंतर मानचित्रों f, g : X → Y के बीच समरूपता, f और g के अनुरूप श्रृंखला मानचित्रों के बीच श्रृंखला समरूपता उत्पन्न करती है। इससे पता चलता है कि दो समस्थानिक मानचित्र एकवचन समरूपता पर ही मानचित्र को प्रेरित करते हैं। "श्रंखला होमोटॉपी" नाम इस उदाहरण से प्रेरित है।
उदाहरण
एकवचन समरूपता
X को टपॉलजी का मूल्य रहने दें। प्राकृतिक संख्या n के लिए Cn(X) को परिभाषित करें स्वतंत्र एबेलियन समूह औपचारिक रूप से एकवचन होमोलॉजी द्वारा उत्पन्न होता है | X में एकवचन n- सिम्प्लिसेस, और सीमा मानचित्र को परिभाषित करें होना
जहां टोपी शीर्ष (ज्यामिति) के लोप को दर्शाती है। अर्थात्, विलक्षण सिम्प्लेक्स की सीमा उसके चेहरों पर प्रतिबंधों का वैकल्पिक योग है। यह दिखाया जा सकता है कि ∂2=0, अतः श्रृंखला जटिल है; एकवचन समरूपता इस परिसर की समरूपता है।
सिंगुलर होमोलॉजी होमोटॉपी या होमोटॉपी समकक्ष तक टोपोलॉजिकल स्पेस का उपयोगी अपरिवर्तनीय है। डिग्री शून्य होमोलॉजी समूह X के पथ-घटकों पर मुक्त एबेलियन समूह है।
सिंगुलर होमोलॉजी, होमोटॉपी तुल्यता तक टोपोलॉजिकल स्पेस का उपयोगी अपरिवर्तनीय है। डिग्री शून्य होमोलॉजी समूह एक्स के पथ-घटकों पर मुक्त एबेलियन समूह है।
मेमने जैसा गर्भ
किसी भी स्मूथ मैनिफोल्ड M पर अंतर k- रूप वास्तविक संख्या सदिश स्थल बनाते हैं जिसे जोड़ के तहत Ωk(M) कहा जाता है। बाहरी व्युत्पन्न d,मानचित्र Ωk(M) को Ωk+1 (M) तक मैप करता है, औरd2 = 0 अनिवार्य रूप से दूसरे व्युत्पन्न की समरूपता से अनुसरण करता है, इसलिए बाहरी व्युत्पन्न के साथ k-रूप के सदिश रिक्त स्थान कोचेन कॉम्प्लेक्स हैं।
इस परिसर के सह-समरूपता को M का डी राम सह-समरूपता कहा जाता है। आयाम शून्य में समरूपता समूह M से R तक स्थानीय रूप से स्थिर कार्यो के सदिश स्थान के लिए आइसोमोर्फिक है। इस प्रकार कॉम्पैक्ट मैनिफोल्ड के लिए, यह वास्तविक सदिश स्थान है जिसका आयाम M से जुड़े घटकों की संख्या है '.
स्मूथनेसयामैनिफोल्ड्स के बीच सुचारू कार्य श्रृंखला मानचित्रों को प्रेरित करते हैं, और मानचित्रों के बीच सुचारू होमोटोपियां श्रृंखला होमोटोपियों को प्रेरित करती हैं।
श्रृंखला परिसरों की श्रेणी
श्रृंखला मानचित्रों के साथ K-मॉड्यूल के श्रृंखला परिसर श्रेणी (गणित) ChK, बनाते हैं, जहां K क्रमविनिमेय वलय है।
यदि V = V और W = W श्रंखला कॉम्प्लेक्स हैं, उनके टेंसर उत्पाद द्वारा दी गई डिग्री n तत्वों वाला श्रृंखला परिसर है
और अंतर द्वारा दिया गया
- जहाँ a और b क्रमशः V और W में कोई दो सजातीय सदिश हैं, और a की डिग्री को दर्शाता है।
यह टेंसर उत्पाद श्रेणी ChK बनाता है सममित मोनोइडल श्रेणी में। इस मोनोइडल उत्पाद के संबंध में पहचान वस्तु बेस वलय K है जिसे डिग्री 0 में श्रृंखला परिसर के रूप में देखा जाता है। ब्रेडेड मोनोइडल श्रेणी सजातीय तत्वों के सरल टेंसर पर दी गई है
ब्रेडिंग के लिए श्रंखला मैप होना आवश्यक है।
इसके अतिरिक्त, K-मॉड्यूल के श्रंखला कॉम्प्लेक्स की श्रेणी में भी मोनोइडल श्रेणी बंद है: दिए गए श्रंखला कॉम्प्लेक्स वी और डब्ल्यू, V और W का आंतरिक होम, जिसे होम (V,W) दर्शाया गया है, डिग्री n तत्वों के साथ श्रंखला कॉम्प्लेक्स है। और अंतर द्वारा दिया गया
- .
हमारे पास प्राकृतिक समरूपता है
आगे के उदाहरण
- अमितसूर कॉम्प्लेक्स
- बलोच के उच्च चाउ समूहों को परिभाषित करने के लिए उपयोग किया जाने वाला कॉम्प्लेक्स
- बुच्सबाउम-रिम कॉम्प्लेक्स
- सेच कॉम्प्लेक्स
- कसीन कॉम्प्लेक्स
- ईगॉन-नॉर्थकॉट कॉम्प्लेक्स
- गेर्स्टन कॉम्प्लेक्स
- ग्राफ कॉम्प्लेक्स[1]
- कोस्ज़ुल कॉम्प्लेक्स
- मूर कॉम्प्लेक्स
- शूर कॉम्प्लेक्स
यह भी देखें
- विभेदक श्रेणीबद्ध बीजगणित
- विभेदक श्रेणीबद्ध लाई बीजगणित
- डॉल्ड-कान पत्राचार का कहना है कि श्रृंखला परिसरों की श्रेणी और सरल एबेलियन समूहों की श्रेणी के बीच समानता है।
- बुच्सबाम-ईसेनबड चक्रीयता मानदंड
- विभेदक श्रेणीबद्ध मॉड्यूल
संदर्भ
- Bott, Raoul; Tu, Loring W. (1982), Differential Forms in Algebraic Topology, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90613-3
- Hatcher, Allen (2002). Algebraic Topology. Cambridge: Cambridge University Press. ISBN 0-521-79540-0.