संभाव्यता सिद्धांत

From Vigyanwiki
Revision as of 14:47, 3 August 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

संभाव्यता सिद्धांत कुछ प्रकार की अनिश्चितता से निपटने के लिए गणितीय सिद्धांत है और संभाव्यता सिद्धांत का विकल्प है। यह क्रमशः असंभव से संभव और अनावश्यक से आवश्यक तक, 0 और 1 के बीच संभावना और आवश्यकता के माप का उपयोग करता है। प्रोफ़ेसर लोटफ़ी ज़ादेह ने पहली बार 1978 में फजी समुच्चय और फजी लॉजिक के अपने सिद्धांत के विस्तार के रूप में संभावना सिद्धांत प्रस्तुत किया था। डिडिएर डुबोइस (गणितज्ञ) और हेनरी प्रेड ने इसके विकास में और योगदान दिया था। इससे पहले, 1950 के दशक में, अर्थशास्त्री जी.एल.एस. शेकले ने संभावित आश्चर्य की डिग्री का वर्णन करने के लिए न्यूनतम/अधिकतम बीजगणित का प्रस्ताव रखा था।

संभावना का औपचारिकीकरण

सरलता के लिए, मान लें कि प्रवचन का ब्रह्मांड Ω सीमित समुच्चय है। संभावना माप से [0, 1] फलन है इस प्रकार:

स्वयंसिद्ध 1:
स्वयंसिद्ध 2:
स्वयंसिद्ध 3: किसी भी असंयुक्त समुच्चय और उपसमुच्चय के लिए है.

यह इस प्रकार है कि, परिमित संभाव्यता समिष्ट पर संभाव्यता की तरह, संभावना माप सिंगलटन पर इसके व्यवहार से निर्धारित होता है:

स्वयंसिद्ध 1 की व्याख्या इस धारणा के रूप में की जा सकती है कि Ω संसार की भविष्य की स्थितियों का विस्तृत विवरण है, क्योंकि इसका कारण है कि Ω के बाहर के तत्वों को कोई विश्वास महत्व नहीं दिया गया है।

स्वयंसिद्ध 2 की व्याख्या इस धारणा के रूप में की जा सकती है कि साक्ष्य किससे है का निर्माण किसी भी विरोधाभास से मुक्त है। तकनीकी रूप से, इसका तात्पर्य यह है कि Ω में संभावना 1 के साथ कम से कम तत्व है।

स्वयंसिद्ध 3 संभावनाओं में योगात्मकता स्वयंसिद्ध से मेल खाता है। चूँकि इसमें महत्वपूर्ण व्यावहारिक अंतर है। संभाव्यता सिद्धांत कम्प्यूटेशनल रूप से अधिक सुविधाजनक है क्योंकि स्वयंसिद्ध 1-3 का तात्पर्य यह है कि:

किसी भी उपसमुच्चय और के लिए है

क्योंकि प्रत्येक घटक की संभावना से संघ की संभावना को जाना जा सकता है, इसलिए यह कहा जा सकता है कि संघ संचालक के संबंध में संभावना संघटन का सिद्धांत है। चूँकि ध्यान दें कि यह इंटरसेक्शन संचालक के संबंध में संरचनागत नहीं है। सामान्यतः:

जब Ω परिमित नहीं है, तो स्वयंसिद्ध 3 को इसके द्वारा प्रतिस्थापित किया जा सकता है:

सभी सूचकांक समुच्चयो के लिए , यदि उपसमुच्चय युग्मित असंयुक्त हैं,

आवश्यकता

जबकि संभाव्यता सिद्धांत एकल संख्या, संभाव्यता का उपयोग करता है, यह वर्णन करने के लिए कि किसी घटना के घटित होने की कितनी संभावना है, संभावना सिद्धांत दो अवधारणाओं, संभावना और घटना की आवश्यकता का उपयोग करता है। किसी भी समुच्चय के लिए , आवश्यकता माप द्वारा परिभाषित किया गया है

.

उपरोक्त सूत्र में, के पूरक को दर्शाता है , वह तत्व है वह संबंधित नहीं है यह दिखाना सीधा है कि:

किसी के लिए
.

ध्यान दें कि संभाव्यता सिद्धांत के विपरीत, संभावना स्व-दोहरी नहीं है। अर्थात किसी भी इवेंट के लिए , हमारे पास केवल असमानता है:

चूँकि, निम्नलिखित द्वैत नियम प्रयुक्त है:

किसी भी घटना के लिए , दोनों में से , या है

तदनुसार, किसी घटना के बारे में मान्यताओं को संख्या और बिट द्वारा दर्शाया जा सकता है।

व्याख्या

ऐसे चार स्थिति हैं जिनकी व्याख्या इस प्रकार की जा सकती है:

कारण कि आवश्यक है। निश्चित रूप से सही है. इसका तात्पर्य यह है .

कारण कि असंभव है। निश्चित रूप से गलत है. इसका तात्पर्य यह है .

कारण कि संभव है। मुझे बिल्कुल भी आश्चर्य नहीं होगा यदि घटित होना। वह छोड़ देता है .

कारण कि अनावश्यक है. मुझे बिल्कुल भी आश्चर्य नहीं होगा यदि उत्पन्न नहीं होता है। वह छोड़ देता है .

पिछले दो स्थितियों और का प्रतिच्छेदन है इसका कारण यह है कि मैं किसी भी चीज़ पर विश्वास नहीं करता है. क्योंकि यह इस तरह की अनिश्चितता की अनुमति देता है, संभावना सिद्धांत मौलिक द्विसंयोजक तर्क के अतिरिक्त कई-मूल्यवान तर्क, जैसे अंतर्ज्ञानवादी तर्क, के स्नातक स्तर से संबंधित है।

ध्यान दें कि संभावना के विपरीत, फ़ज़ी लॉजिक यूनियन और इंटरसेक्शन संचालक दोनों के संबंध में रचनात्मक है। इस प्रकार फ़ज़ी सिद्धांत के साथ संबंध को निम्नलिखित क्लासिक उदाहरण से समझाया जा सकता है।

  • अस्पष्ट तर्क: जब बोतल आधी भरी होती है, तो यह कहा जा सकता है कि बोतल भरी होने के प्रस्ताव की सत्यता का स्तर 0.5 है। पूर्ण शब्द को बोतल में तरल की मात्रा का वर्णन करने वाले अस्पष्ट विधेय के रूप में देखा जाता है।
  • संभावना सिद्धांत: बोतल है, या तो पूरी तरह से भरी हुई है या पूरी तरह से खाली है। प्रस्ताव संभावना स्तर कि बोतल भरी 0.5 है, विश्वास की डिग्री का वर्णन करता है। उस प्रस्ताव में 0.5 की व्याख्या करने का विधि इसके अर्थ को इस प्रकार परिभाषित करना है: कि यह तब तक खाली है जब तक अंतर सम (1:1) या उत्तम है, और मैं किसी भी मूल्य पर नियम नहीं लगाऊंगा कि यह भरा हुआ है।

संभावना सिद्धांत स्पष्ट संभाव्यता सिद्धांत के रूप में

संभाव्यता और संभावना सिद्धांतों के बीच व्यापक औपचारिक पत्राचार है, जहां अतिरिक्त संचालक अधिकतम संचालक से मेल खाता है।

एक संभावना माप को साक्ष्य के डेम्पस्टर-शेफ़र सिद्धांत में व्यंजन संभाव्यता माप के रूप में देखा जा सकता है। इस प्रकार संभावना सिद्धांत के संचालकों को हस्तांतरणीय विश्वास मॉडल के संचालकों के अति-सतर्क संस्करण के रूप में देखा जा सकता है, जो साक्ष्य के सिद्धांत का आधुनिक विकास है।

संभावना को ऊपरी और निचली संभावनाओं के रूप में देखा जा सकता है: कोई भी संभावना वितरण स्वीकार्य संभाव्यता वितरण के अद्वितीय क्रेडेंशियल समुच्चय समुच्चय को परिभाषित करता है

यह किसी को स्पष्ट संभाव्यता के उपकरणों का उपयोग करके संभावना सिद्धांत का अध्ययन करने की अनुमति देता है।

आवश्यकता तर्क

हम स्वयंसिद्ध 1 और स्वयंसिद्ध 3 को संतुष्ट करने वाले प्रत्येक फलन को सामान्यीकृत संभावना कहते हैं। इस प्रकार हम सामान्यीकृत आवश्यकता को सामान्यीकृत संभावना का द्वैत कहते हैं। सामान्यीकृत आवश्यकताएँ बहुत ही सरल और रोचक अस्पष्ट तर्क से संबंधित हैं जिसे आवश्यकता तर्क कहा जाता है। इस प्रकार आवश्यकता तर्क के कटौती तंत्र में तार्किक स्वयंसिद्ध सामान्य मौलिक टॉटोलॉजी (तर्क) हैं। इस प्रकार इसके अतिरिक्त, सामान्य कार्यप्रणाली का विस्तार करने वाला केवल अस्पष्ट अनुमान नियम है। ऐसा नियम कहता है कि यदि α और α → β क्रमशः डिग्री λ और μ पर सिद्ध होते हैं, इस प्रकार जिससे हम डिग्री न्यूनतम {λ,μ} पर β का प्रमाणित कर सकते हैं। यह देखना सरल है कि इस तरह के तर्क के सिद्धांत सामान्यीकृत आवश्यकताएं हैं और पूरी तरह से सुसंगत सिद्धांत आवश्यकताओं के साथ मेल खाते हैं (उदाहरण के लिए गेरला 2001 देखें)।

यह भी देखें

संदर्भ