वर्गों का अवशिष्ट योग

From Vigyanwiki
Revision as of 16:13, 13 July 2023 by alpha>Neetua08

आँकड़ों में वर्गों के अवशिष्ट योग (आरएसएस) को वर्ग अवशेषों के योग (एसएसआर) या त्रुटियों के वर्ग अनुमान के योग (एसएसई) के रूप में भी जाना जाता है। जो अवशिष्टों के वर्गों (अंकगणित) का योग है (डेटा के वास्तविक अनुभवजन्य मानो से अनुमानित विचलन)। यह डेटा और एक अनुमान आदर्श जैसे कि रैखिक प्रतिगमन के मध्य विसंगति का एक माप है। एक लघु आरएसएस डेटा के लिए आदर्श के उपयुक्त होने का संकेत देता है। इसका उपयोग पैरामीटर चयन और आदर्श चयन में इष्टतमता मानदंड के रूप में किया जाता है।


सामान्यतः, वर्गों का कुल योग = वर्गों का स्पष्ट योग + वर्गों का अवशिष्ट योग है। बहुभिन्नरूपी साधारण न्यूनतम वर्ग (ओएलएस) स्थिति में इसके प्रमाण के लिए, सामान्य साधारण न्यूनतम वर्ग आदर्श में वर्गों का स्पष्ट विभाजन देखें।

एक व्याख्यात्मक परिवर्तनीय

एकल व्याख्यात्मक परिवर्तनीय वाले आदर्श में, आरएसएस इस प्रकार दिया गया है:[1]

जिस स्थान पर yi पूर्वानुमानित किए जाने वाले परिवर्तनीय का ith मान है xi व्याख्यात्मक परिवर्तनीय का ith मान है और yi का अनुमानित मान है (जिसे भी कहा जाता है)। एक मानक रैखिक सरल प्रतिगमन आदर्श में, , जिस स्थान पर α और β गुणांक हैं, y और x क्रमशः प्रतिगमन और प्रतिगामी हैं, और ε त्रुटि पद है। अवशिष्टों के वर्गों का योग के वर्गों का योग है। अर्थात

जिस स्थान पर स्थिर पद का अनुमानित मान है और प्रवणता गुणांक का अनुमानित मान है।

ओएलएस वर्गों के अवशिष्ट योग के लिए आव्युह अभिव्यक्ति

सामान्य प्रतिगमन आदर्श के साथ n अवलोकन और k व्याख्याकार, जिनमें से पहला एक स्थिर इकाई सदिश है जिसका गुणांक प्रतिगमन अवरोधन है

कहाँ y निर्भर परिवर्तनीय अवलोकनों का एक n × 1 सदिश है, जो n × k आव्युह का प्रत्येक स्तंभ है X k व्याख्याकारों में से एक पर अवलोकनों का एक सदिश है, वास्तविक गुणांकों का एक k × 1 सदिश है, और e वास्तविक अंतर्निहित त्रुटियों का एक n× 1 सदिश है। के लिए सामान्य न्यूनतम वर्ग अनुमानक है

अवशिष्ट सदिश ; तब वर्गों का शेष योग है:

,

(अवशेषों के सदिश मानदंड के वर्ग के सामान्तर)। पूरे में:

,

कहाँ H टोपी आव्युह, या रैखिक प्रतिगमन में प्रक्षेपण आव्युह है।

पियर्सन के उत्पाद-क्षण सहसंबंध के साथ संबंध

न्यूनतम वर्ग|न्यूनतम-वर्ग प्रतिगमन रेखा द्वारा दी गई है

,

कहाँ और , कहाँ और इसलिए,

कहाँ पियर्सन सहसंबंध गुणांक|पियर्सन उत्पाद-क्षण सहसंबंध द्वारा दिया गया है इसलिए,


यह भी देखें

संदर्भ

  1. Archdeacon, Thomas J. (1994). Correlation and regression analysis : a historian's guide. University of Wisconsin Press. pp. 161–162. ISBN 0-299-13650-7. OCLC 27266095.
  • Draper, N.R.; Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley. ISBN 0-471-17082-8.