पूर्ण जाली

From Vigyanwiki
Revision as of 23:40, 27 January 2023 by alpha>Indicwiki (Created page with "{{Short description|Partially ordered set in which all subsets have both a supremum and infimum}} गणित में, एक पूर्ण जाली एक आ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, एक पूर्ण जाली एक आंशिक रूप से आदेशित सेट है जिसमें सभी उपसमुच्चय में एक अंतिम (जुड़ना) और एक सबसे कम (मिलना) दोनों होते हैं। एक जाली जो इन गुणों में से कम से कम एक को संतुष्ट करती है, उसे 'सशर्त रूप से पूर्ण जाली' के रूप में जाना जाता है। विशेष रूप से, प्रत्येक गैर-खाली परिमित जाली पूर्ण होती है। गणित और कंप्यूटर विज्ञान में कई अनुप्रयोगों में पूर्ण जाली दिखाई देती है। जाली (क्रम) का एक विशेष उदाहरण होने के नाते, उनका अध्ययन क्रम सिद्धांत और सार्वभौमिक बीजगणित दोनों में किया जाता है।

पूर्ण जाली को पूर्ण आंशिक आदेश (सीपीओ) के साथ भ्रमित नहीं होना चाहिए, जो आंशिक रूप से आदेशित सेटों के एक अधिक सामान्य वर्ग का गठन करता है। अधिक विशिष्ट पूर्ण जालक पूर्ण बूलियन बीजगणित और पूर्ण हेटिंग बीजगणित ('लोकेल') हैं।

औपचारिक परिभाषा

एक आंशिक रूप से आदेशित सेट (एल, ≤) एक पूर्ण जाली है यदि एल के प्रत्येक सबसेट ए में सबसे बड़ी निचली सीमा (निम्नतम, जिसे मीट भी कहा जाता है) और कम से कम ऊपरी सीमा (सर्वोच्च, जिसे शामिल भी कहा जाता है) दोनों हैं ( एल, ≤)।

मिलन द्वारा दर्शाया गया है , और इससे जुड़ें .

विशेष मामले में जहां ए खाली सेट है, ए का मिलन एल का सबसे बड़ा तत्व होगा। इसी तरह, खाली सेट में शामिल होने से कम से कम तत्व प्राप्त होता है। चूंकि परिभाषा बाइनरी मिलने और जुड़ने के अस्तित्व को भी आश्वस्त करती है, इसलिए पूर्ण जाली इस प्रकार बंधी हुई जाली का एक विशेष वर्ग बनाती है।

उपरोक्त परिभाषा के अधिक निहितार्थों पर लेख में पूर्णता (आदेश सिद्धांत) पर क्रम सिद्धांत में चर्चा की गई है।

पूर्ण अर्द्ध लेटेक्स

आदेश सिद्धांत में, मनमाने ढंग से मिलने को मनमाने ढंग से जुड़ने और इसके विपरीत (विवरण के लिए, पूर्णता (आदेश सिद्धांत) देखें) के रूप में व्यक्त किया जा सकता है। असल में, इसका मतलब यह है कि सभी पूर्ण जाली के वर्ग को प्राप्त करने के लिए या तो सभी मिलते हैं या सभी शामिल होते हैं, यह पर्याप्त है।

एक परिणाम के रूप में, कुछ लेखकों ने पूरा मिलन-सेमिलैटिस या पूर्ण ज्वाइन-सेमी-जाली शब्दों का उपयोग पूर्ण लैटिस को संदर्भित करने के एक अन्य तरीके के रूप में किया है। हालांकि वस्तुओं पर समान, शब्द समरूपता की विभिन्न धारणाओं को शामिल करते हैं, जैसा कि आकारिकी पर नीचे दिए गए खंड में समझाया जाएगा।

दूसरी ओर, कुछ लेखकों के पास morphisms के इस भेद के लिए कोई उपयोग नहीं है (विशेष रूप से पूर्ण अर्ध-जाली morphisms की उभरती अवधारणाओं को सामान्य शब्दों में भी निर्दिष्ट किया जा सकता है)। नतीजतन, पूर्ण मिलना-अर्ध-जाली को भी उन मीट-सेमिलैटिस के रूप में परिभाषित किया गया है जो पूर्ण आंशिक आदेश भी हैं। यह अवधारणा यकीनन एक मीट-सेमिलैटिस की सबसे पूर्ण धारणा है जो अभी तक एक जाली नहीं है (वास्तव में, केवल शीर्ष तत्व गायब हो सकता है)। यह चर्चा सेमीलैटिस पर आलेख में भी मिलती है।

पूर्ण उपवर्ग

एक पूर्ण जाली एल के एक सबलेटिस एम को एल का पूर्ण सबलेटिस कहा जाता है यदि एम के प्रत्येक सबसेट ए के लिए तत्व और , जैसा कि L में परिभाषित किया गया है, वास्तव में M में हैं।[1] यदि उपरोक्त आवश्यकता को केवल गैर-रिक्त मिलने की आवश्यकता के लिए कम किया जाता है और एल में शामिल होता है, तो सबलेटिस एम को एम का बंद सबलेटिस कहा जाता है।

सशर्त पूर्ण जाली

एक जाली को सशर्त रूप से पूर्ण कहा जाता है यदि यह निम्नलिखित गुणों के तार्किक संयोजन को संतुष्ट करता है:[2]

  • ऊपर बंधे किसी भी उपसमुच्चय की न्यूनतम ऊपरी सीमा होती है
  • नीचे परिबद्ध किसी उपसमुच्चय की अधिकतम निचली परिबद्धता होती है

उदाहरण

  • कोई भी गैर-खाली परिमित जाली पूरी तरह से पूर्ण है।
  • किसी दिए गए सेट का सत्ता स्थापित, सबसेट द्वारा आदेशित। सुप्रीमम यूनियन (सेट थ्योरी) द्वारा दिया जाता है और इन्फिमम सबसेट के इंटरसेक्शन (सेट थ्योरी) द्वारा दिया जाता है।
  • इकाई अंतराल [0,1] और [[विस्तारित वास्तविक संख्या रेखा]], परिचित कुल क्रम और साधारण सर्वोच्च और न्यूनतम के साथ। दरअसल, एक पूरी तरह से आदेशित सेट (इसके आदेश टोपोलॉजी के साथ) कॉम्पैक्ट जगह एक टोपोलॉजिकल स्पेस के रूप में है यदि यह जाली के रूप में पूर्ण है।
  • गैर-ऋणात्मक पूर्णांक, विभाज्यता द्वारा क्रमित। इस जाली का सबसे छोटा तत्व संख्या 1 है, क्योंकि यह किसी अन्य संख्या को विभाजित करता है। शायद आश्चर्यजनक रूप से, सबसे बड़ा तत्व 0 है, क्योंकि इसे किसी अन्य संख्या से विभाजित किया जा सकता है। परिमित समुच्चयों का सर्वोच्च सबसे कम सामान्य गुणक और सबसे बड़ा सामान्य विभाजक द्वारा दिया जाता है। अनंत सेटों के लिए, उच्चतम हमेशा 0 होगा जबकि न्यूनतम 1 से अधिक हो सकता है। उदाहरण के लिए, सभी सम संख्याओं के सेट में 2 सबसे बड़ा सामान्य विभाजक है। यदि 0 को इस संरचना से हटा दिया जाए तो यह एक जाली बनी रहती है लेकिन पूर्ण नहीं होती है।
  • समावेशन के तहत किसी दिए गए समूह के उपसमूह। (जबकि यहां सबसे कम सामान्य सेट-सैद्धांतिक प्रतिच्छेदन है, उपसमूहों के एक सेट का सर्वोच्च उपसमूह उपसमूहों के सेट-सैद्धांतिक संघ द्वारा उत्पन्न उपसमूह है, चौराहा (सेट सिद्धांत) संघ स्वयं।) यदि ई जी की पहचान है , तब तुच्छ समूह {e} G का आंशिक क्रम उपसमूह है, जबकि आंशिक क्रम उपसमूह स्वयं समूह G है।
  • एक मॉड्यूल (गणित) के सबमॉड्यूल, समावेशन द्वारा आदेशित। सुप्रीमम को सबमॉड्यूल्स के योग और इन्फिमम को चौराहे द्वारा दिया जाता है।
  • एक अंगूठी (गणित) का आदर्श (रिंग थ्योरी), समावेशन द्वारा आदेशित। श्रेष्ठता को आदर्शों के योग और अंतःकरण द्वारा प्रतिच्छेदन द्वारा दिया जाता है।
  • एक टोपोलॉजिकल स्पेस के खुले सेट, समावेशन द्वारा आदेशित। सुप्रीमम ओपन सेट के मिलन और इन्फिमम द्वारा इंटरसेक्शन के इंटीरियर (टोपोलॉजी) द्वारा दिया जाता है।
  • एक वास्तविक संख्या या जटिल संख्या सदिश स्थान का उत्तल सेट, समावेशन द्वारा आदेशित। infimum उत्तल सेट के प्रतिच्छेदन और संघ के उत्तल हल द्वारा सुप्रीमम द्वारा दिया जाता है।
  • एक सेट पर टोपोलॉजिकल स्पेस, समावेशन द्वारा आदेशित। इन्फिममम टोपोलॉजी के प्रतिच्छेदन द्वारा दिया जाता है, और टोपोलॉजी के संघ द्वारा उत्पन्न टोपोलॉजी द्वारा सुप्रीमम दिया जाता है।
  • एक सेट पर सभी सकर्मक संबंधों की जाली।
  • एक multiset के सभी उप-मल्टीसेट्स की जाली।
  • एक सेट पर सभी तुल्यता संबंधों की जाली; तुल्यता संबंध ~ को ≈ से छोटा (या महीन) माना जाता है यदि x~y हमेशा x≈y को दर्शाता है।
  • वॉन न्यूमैन बीजगणित के स्व-संलग्न अनुमानों (जिसे ऑर्थोगोनल अनुमानों के रूप में भी जाना जाता है) की जाली।

स्थानीय रूप से परिमित पूर्ण जाली

एक पूर्ण जाली L को स्थानीय रूप से परिमित कहा जाता है यदि किसी अनंत उपसमुच्चय का सर्वोच्च 1 के बराबर है, या समतुल्य है, सेट किसी के लिए परिमित है . जालक (N, |) स्थानीय रूप से परिमित है। ध्यान दें कि इस जाली में, आम तौर पर निरूपित तत्व 0 वास्तव में 1 है और इसके विपरीत।

पूर्ण जालियों की रूपात्मकता

पूर्ण जाली के बीच पारंपरिक morphisms पूर्ण समरूपता (या पूर्ण जाली समरूपता) हैं। इन्हें उन कार्यों के रूप में वर्णित किया जाता है जो संरक्षण (आदेश सिद्धांत) को सीमित करते हैं और सभी मिलते हैं। स्पष्ट रूप से, इसका मतलब यह है कि एक फ़ंक्शन f: L→M दो पूर्ण लैटिस एल और एम के बीच एक पूर्ण समरूपता है यदि

  • और
  • ,

एल के सभी उपसमुच्चय ए के लिए। ऐसे कार्य स्वचालित रूप से मोनोटोनिक होते हैं, लेकिन पूर्ण समरूपता होने की स्थिति वास्तव में अधिक विशिष्ट होती है। इस कारण से, आकारिकी की कमजोर धारणाओं पर विचार करना उपयोगी हो सकता है, जो केवल सभी जोड़ (एक श्रेणी (गणित) 'सुपर' देते हुए) या सभी मीट (श्रेणी 'इन्फ' देते हुए) को संरक्षित करने के लिए आवश्यक हैं, जो वास्तव में असमान हैं स्थितियाँ। इस धारणा को क्रमशः पूर्ण मीट-सेमिलैटिस या पूर्ण जॉइन-सेमिलैटिस के समरूपता के रूप में माना जा सकता है।

गाल्वा कनेक्शन और आसन्न

इसके अलावा, आकारिकी जो सभी जोड़ों को संरक्षित करती है, को समान रूप से एक अद्वितीय गैलोज़ कनेक्शन के निचले आसन्न भाग के रूप में चित्रित किया जाता है। P और Q की किसी भी जोड़ी के लिए, ये मोनोटोन फ़ंक्शंस f और g के जोड़े द्वारा दिए गए हैं जैसे कि

जहाँ f को निचला संलग्नक कहा जाता है और g को ऊपरी संलग्नक कहा जाता है। आसन्न फंक्टर प्रमेय द्वारा, किसी भी पूर्व-आदेशों के बीच एक मोनोटोन मानचित्र सभी जोड़ों को संरक्षित करता है यदि और केवल यदि यह एक निचला आसन्न है, और सभी को संरक्षित करता है यदि और केवल यदि यह एक ऊपरी आसन्न है।

इस प्रकार, प्रत्येक जुड़ने-संरक्षण मोर्फिज्म उलटा दिशा में एक अद्वितीय ऊपरी आसन्न निर्धारित करता है जो सभी मीट को संरक्षित करता है। इसलिए, पूर्ण अर्ध-जाली मोर्फिज्म के साथ पूर्ण लैटिस पर विचार करना गैलोइस कनेक्शन को मोर्फिज्म के रूप में मानने के लिए उबलता है। यह इस अंतर्दृष्टि को भी उत्पन्न करता है कि पेश किए गए morphisms मूल रूप से पूर्ण लैटिस की केवल दो अलग-अलग श्रेणियों का वर्णन करते हैं: एक पूर्ण समरूपता के साथ और एक मिलने-संरक्षण कार्यों (ऊपरी आसन्न), द्वंद्व (श्रेणी सिद्धांत) के साथ जुड़ने-संरक्षण मैपिंग के साथ ( निचले जोड़)।

एक विशेष रूप से महत्वपूर्ण विशेष मामला सबसेट पी (एक्स) और पी (वाई) के जाली और एक्स से वाई तक एक फ़ंक्शन के लिए है। इस मामले में, पावर सेट के बीच प्रत्यक्ष छवि और उलटा छवि मानचित्र एक दूसरे के ऊपरी और निचले हिस्से हैं , क्रमश।

नि: शुल्क निर्माण और समापन

मुक्त पूर्ण सेमीलेटिस

हमेशा की तरह, मुक्त वस्तुओं का निर्माण आकारिकी के चुने हुए वर्ग पर निर्भर करता है। आइए पहले उन कार्यों पर विचार करें जो सभी जोड़ (यानी गैलोज़ कनेक्शन के निचले आसन्न) को संरक्षित करते हैं, क्योंकि यह मामला पूर्ण समरूपता के लिए स्थिति की तुलना में सरल है। उपर्युक्त शब्दावली का प्रयोग करते हुए, इसे एक मुक्त पूर्ण जुड़ाव-सेमिलैटिस कहा जा सकता है।

सार्वभौमिक बीजगणित से मानक परिभाषा का उपयोग करते हुए, एक जनरेटिंग सेट S पर एक पूर्ण पूर्ण जाली एक पूर्ण जाली L है जिसमें एक फ़ंक्शन i: S→L है, जैसे कि S से कोई भी फ़ंक्शन f कुछ पूर्ण जाली M के अंतर्निहित सेट तक हो सकता है L से M तक एक आकारिकी f° के माध्यम से विशिष्ट रूप से गुणनखंडित किया गया। भिन्न रूप से कहा गया है, S के प्रत्येक तत्व s के लिए हम पाते हैं कि f(s) = f°(i(s)) और वह f° इस गुण वाला एकमात्र आकारिकी है। ये शर्तें मूल रूप से यह कहने की राशि हैं कि सेट और फ़ंक्शंस की श्रेणी से पूर्ण लैटिस और जॉइन-प्रिज़र्विंग फ़ंक्शंस की श्रेणी से एक फ़ंक्टर है, जो भुलक्कड़ फ़ंक्टर से पूर्ण जाली से लेकर उनके अंतर्निहित सेट तक है।

इस अर्थ में मुक्त पूर्ण जाली का निर्माण बहुत आसानी से किया जा सकता है: कुछ सेट S द्वारा उत्पन्न पूर्ण जाली सिर्फ सत्ता स्थापित 2 हैS, अर्थात S के सभी उपसमुच्चयों का समुच्चय, उपसमुच्चय द्वारा क्रमित। आवश्यक इकाई i:S→2S S के किसी भी तत्व को सिंगलटन सेट {s} में मैप करता है। उपरोक्त के रूप में एक मैपिंग f दिया गया है, फ़ंक्शन f°:2S→M द्वारा परिभाषित किया गया है

.

तब f° संघों को सर्वोच्च में परिवर्तित करता है और इस प्रकार जुड़ने को संरक्षित करता है।

हमारे विचारों से मोर्फिज्म के लिए एक मुक्त निर्माण भी होता है जो जुड़ने के बजाय मिलने को संरक्षित करता है (यानी गैलोज़ कनेक्शन के ऊपरी जोड़)। वास्तव में, हमें केवल द्वैत (आदेश सिद्धांत) करना है जो ऊपर कहा गया था: नि: शुल्क वस्तुओं को रिवर्स इनक्लूजन द्वारा ऑर्डर किए गए पावरसेट के रूप में दिया जाता है, जैसे कि सेट यूनियन मीट ऑपरेशन प्रदान करता है, और फ़ंक्शन f° को मीट के बजाय मीट के संदर्भ में परिभाषित किया जाता है जुड़ता है। इस निर्माण के परिणाम को एक मुक्त पूर्ण मीट-सेमिलैटिस कहा जा सकता है। किसी को यह भी ध्यान देना चाहिए कि ये नि: शुल्क निर्माण उन लोगों का विस्तार कैसे करते हैं जिनका उपयोग सेमीलेटिस प्राप्त करने के लिए किया जाता है, जहां हमें केवल परिमित सेटों पर विचार करने की आवश्यकता होती है।

मुक्त पूर्ण जाली

संपूर्ण समाकारिता वाले पूर्ण जालकों की स्थिति स्पष्ट रूप से अधिक जटिल है। वास्तव में, मुक्त पूर्ण जाली आम तौर पर मौजूद नहीं होती है। बेशक, कोई एक शब्द समस्या को जाली (क्रम) के मामले के समान बना सकता है, लेकिन इस मामले में सभी संभावित शब्द समस्या (गणित) (या पदों) का संग्रह एक उचित वर्ग होगा, क्योंकि मनमाने ढंग से मिलता है और जॉइन में हर प्रमुखता के तर्क-सेट के लिए ऑपरेशन शामिल हैं।

यह संपत्ति अपने आप में कोई समस्या नहीं है: जैसा कि ऊपर दिखाए गए मुक्त पूर्ण सेमीलैटिस के मामले में, यह अच्छी तरह से हो सकता है कि शब्द समस्या का समाधान केवल समकक्ष वर्गों का एक सेट छोड़ देता है। दूसरे शब्दों में, यह संभव है कि सभी शब्दों के वर्ग के उचित वर्गों का एक ही अर्थ हो और इस प्रकार उन्हें मुक्त निर्माण में पहचाना जाता है। हालाँकि, पूर्ण जालक की शब्द समस्या के लिए तुल्यता वर्ग बहुत छोटे हैं, जैसे कि मुक्त पूर्ण जालक अभी भी एक उचित वर्ग होगा, जिसकी अनुमति नहीं है।

अब कोई उम्मीद कर सकता है कि कुछ उपयोगी मामले हैं जहां जेनरेटर का सेट एक पूर्ण पूर्ण जाली के अस्तित्व के लिए पर्याप्त रूप से छोटा है। दुर्भाग्य से, आकार सीमा बहुत कम है और हमारे पास निम्नलिखित प्रमेय है:

तीन जनरेटर पर मुक्त पूर्ण जाली मौजूद नहीं है; यह एक उचित वर्ग है।

इस कथन का एक प्रमाण जॉनस्टोन द्वारा दिया गया है;[3] मूल तर्क का श्रेय अल्फ्रेड डब्ल्यू हेल्स को दिया जाता है;[4] मुक्त जाली पर लेख भी देखें।

समापन

यदि ऊपर विचार किए गए जनरेटर के सेट के स्थान पर उपयोग किए गए किसी दिए गए पोसेट से एक पूर्ण जाली स्वतंत्र रूप से उत्पन्न होती है, तो कोई पॉसेट के पूरा होने की बात करता है। इस ऑपरेशन के परिणाम की परिभाषा मुक्त वस्तुओं की उपरोक्त परिभाषा के समान है, जहां सेट और फ़ंक्शन को पोसेट और मोनोटोन मैपिंग द्वारा प्रतिस्थापित किया जाता है। इसी तरह, मोनोटोन कार्यों के साथ पॉसेट्स की श्रेणी से एक फ़ंक्टर के रूप में पूर्ण करने की प्रक्रिया का वर्णन कर सकते हैं, उपयुक्त आकारिकी के साथ पूर्ण लैटिस की कुछ श्रेणी के लिए जो विपरीत दिशा में भुलक्कड़ फ़ैक्टर के निकट छोड़ दिया गया है।

जब तक कोई मीट- या जॉइन-प्रिजर्विंग फ़ंक्शंस को रूपवाद के रूप में मानता है, यह आसानी से तथाकथित डेडेकिंड-मैकनील पूर्णता के माध्यम से प्राप्त किया जा सकता है। इस प्रक्रिया के लिए, पोसेट के तत्वों को (डेडेकाइंड-) कट्स के लिए मैप किया जाता है, जिसे बाद में मनमाने ढंग से पूर्ण लैटिस के अंतर्निहित पोसेट्स में मैप किया जा सकता है, जैसा कि सेट और मुफ्त पूर्ण (सेमी-) लैटिस के लिए किया जाता है।

पूर्वोक्त परिणाम यह है कि मुक्त पूर्ण जाली मौजूद नहीं है, यह दर्शाता है कि एक पॉसेट से मुक्त निर्माण संभव नहीं है। इसे असतत क्रम के साथ पॉसेट्स पर विचार करके आसानी से देखा जा सकता है, जहां हर तत्व केवल खुद से संबंधित होता है। अंतर्निहित सेट पर ये बिल्कुल मुफ्त पोसेट हैं। क्या पॉसेट्स से पूर्ण जाली का मुक्त निर्माण होगा, तो दोनों निर्माणों की रचना की जा सकती है, जो ऊपर दिए गए नकारात्मक परिणाम का खंडन करता है।

प्रतिनिधित्व

पहले से ही जी। बिरखॉफ की लैटिस थ्योरी किताब[5]Template:Needs page एक बहुत ही उपयोगी प्रतिनिधित्व पद्धति शामिल है। यह संबंध से गैलोज़ कनेक्शन का निर्माण करके दो सेटों के बीच किसी भी द्विआधारी संबंध के लिए एक पूर्ण जाली को जोड़ता है, जिसके बाद दो दोहरे आइसोमॉर्फिक बंद करने वाला ऑपरेटर की ओर जाता है। क्लोजर सिस्टम सेट के चौराहे-बंद परिवार हैं। जब उपसमुच्चय संबंध ⊆ द्वारा आदेश दिया जाता है, तो वे पूर्ण जालक होते हैं।

बिरखॉफ के निर्माण का एक विशेष उदाहरण एक मनमाना पॉसेट (पी, ≤) से शुरू होता है और पी और स्वयं के बीच ऑर्डर संबंध ≤ से गैलोइस कनेक्शन का निर्माण करता है। परिणामी पूर्ण जाली डेडेकिंड-मैकनील पूर्णता है। जब यह पूर्णता एक पोसेट पर लागू होती है जो पहले से ही एक पूर्ण जाली है, तो परिणाम मूल एक के लिए क्रम-समरूपता है। इस प्रकार हम तुरंत पाते हैं कि प्रत्येक पूर्ण जाली को बिरखॉफ की विधि द्वारा, समरूपता तक दर्शाया जाता है।

निर्माण का उपयोग औपचारिक अवधारणा विश्लेषण में किया जाता है, जहां कोई द्विआधारी संबंधों (औपचारिक संदर्भ कहा जाता है) द्वारा वास्तविक-शब्द डेटा का प्रतिनिधित्व करता है और डेटा विश्लेषण के लिए संबंधित पूर्ण जाली (जिसे अवधारणा जाली कहा जाता है) का उपयोग करता है। इसलिए औपचारिक अवधारणा विश्लेषण के पीछे का गणित पूर्ण जालक का सिद्धांत है।

एक और प्रतिनिधित्व निम्नानुसार प्राप्त किया जाता है: एक पूर्ण जाली का एक सबसेट स्वयं एक पूर्ण जाली है (जब प्रेरित आदेश के साथ आदेश दिया जाता है) अगर और केवल अगर यह एक क्लोजर ऑपरेटर की छवि है (लेकिन जरूरी नहीं कि व्यापक) स्व-नक्शा। पहचान मानचित्रण में स्पष्ट रूप से ये दो गुण हैं। इस प्रकार सभी पूर्ण जालक होते हैं।

आगे के परिणाम

पिछले प्रतिनिधित्व परिणामों के अलावा, कुछ अन्य कथन हैं जो पूर्ण जाल के बारे में दिए जा सकते हैं, या जो इस मामले में विशेष रूप से सरल रूप लेते हैं। एक उदाहरण नास्टर-टार्स्की प्रमेय है, जिसमें कहा गया है कि एक पूर्ण जाली पर एक मोनोटोन फ़ंक्शन के निश्चित बिंदु (गणित) का सेट फिर से एक पूर्ण जाली है। यह आसानी से बढ़ते और बेकार कार्यों की छवियों के बारे में उपर्युक्त अवलोकन का सामान्यीकरण माना जाता है, क्योंकि ये प्रमेय के उदाहरण हैं।

यह भी देखें

  • जाली (आदेश)।

संदर्भ

  1. Burris, Stanley N., and H.P. Sankappanavar, H. P., 1981. A Course in Universal Algebra. Springer-Verlag. ISBN 3-540-90578-2 (A monograph available free online).
  2. Baker, Kirby (2010). "Complete Lattices" (PDF). UCLA Department of Mathematics. Retrieved 8 June 2022.
  3. P. T. Johnstone, Stone Spaces, Cambridge University Press, 1982; (see paragraph 4.7)
  4. A. W. Hales, On the non-existence of free complete Boolean algebras, Fundamenta Mathematicae 54: pp.45-66.
  5. Garrett Birkhoff, Lattice Theory, AMS Colloquium Publications Vol. 25, ISBN 978-0821810255