विवेकाधीन त्रुटि
This article needs additional citations for verification. (December 2009) (Learn how and when to remove this template message) |
संख्यात्मक विश्लेषण, कम्प्यूटेशनल भौतिकी और सिमुलेशन में, विवेकाधीन त्रुटि इस तथ्य से उत्पन्न त्रुटि है कि सातत्य (सेट सिद्धांत) चर के एक फ़ंक्शन (गणित) को कंप्यूटर में मूल्यांकन की एक सीमित संख्या द्वारा दर्शाया जाता है, उदाहरण के लिए, एक जाली मॉडल (भौतिकी) पर। बढ़ी हुई कम्प्यूटेशनल जटिलता सिद्धांत के साथ, अधिक बारीक दूरी वाली जाली का उपयोग करके विवेकाधीन त्रुटि को आमतौर पर कम किया जा सकता है।
उदाहरण
विवेकाधीन त्रुटि परिमित अंतर के तरीकों और कम्प्यूटेशनल भौतिकी की छद्म-वर्णक्रमीय विधि में त्रुटि का प्रमुख स्रोत है।
जब हम व्युत्पन्न को परिभाषित करते हैं जैसा या , कहाँ एक अत्यंत छोटी संख्या है, पहले सूत्र और इस सन्निकटन के बीच के अंतर को विवेकाधीन त्रुटि के रूप में जाना जाता है।
संबंधित घटनाएं
संकेत आगे बढ़ाना में, विवेकीकरण का एनालॉग नमूनाकरण (सिग्नल प्रोसेसिंग) है, और यदि सैंपलिंग प्रमेय की शर्तें संतुष्ट हैं तो कोई नुकसान नहीं होता है, अन्यथा परिणामी त्रुटि को अलियासिंग कहा जाता है।
विवेकाधीन त्रुटि, जो डोमेन में परिमित रिज़ॉल्यूशन से उत्पन्न होती है, को परिमाणीकरण त्रुटि के साथ भ्रमित नहीं किया जाना चाहिए, जो सीमा (मानों) में सीमित रिज़ॉल्यूशन है, न ही फ्लोटिंग-पॉइंट अंकगणित से उत्पन्न होने वाली राउंड-ऑफ त्रुटि में। विवेकाधीन त्रुटि तब भी घटित होगी जब मानों को सटीक रूप से प्रस्तुत करना और सटीक अंकगणित का उपयोग करना संभव हो - यह किसी फ़ंक्शन को बिंदुओं के अलग-अलग सेट पर उसके मानों द्वारा प्रस्तुत करने में हुई त्रुटि है, इन मानों में कोई त्रुटि नहीं है।[1]
संदर्भ
- ↑ Higham, Nicholas (2002). संख्यात्मक एल्गोरिदम की सटीकता और स्थिरता. Other Titles in Applied Mathematics (2 ed.). SIAM. p. 5. doi:10.1137/1.9780898718027. ISBN 978-0-89871-521-7.
यह भी देखें
- विवेकाधिकार
- रैखिक मल्टीस्टेप विधि
- परिमाणीकरण त्रुटि
श्रेणी:संख्यात्मक विश्लेषण