विकर्ण रूप से प्रभावशाली मैट्रिक्स
गणित में, एक वर्ग मैट्रिक्स (गणित) को विकर्ण रूप से प्रभावशाली कहा जाता है यदि, मैट्रिक्स की प्रत्येक पंक्ति के लिए, पंक्ति में विकर्ण प्रविष्टि का परिमाण उस पंक्ति में अन्य सभी (गैर-विकर्ण) प्रविष्टियों के परिमाण के योग से बड़ा या उसके बराबर है। अधिक सटीक रूप से, मैट्रिक्स ए विकर्ण रूप से प्रभावशाली है यदि
जहाँ एकij ith पंक्ति और jth कॉलम में प्रविष्टि को दर्शाता है।
यह परिभाषा कमजोर असमानता का उपयोग करती है, और इसलिए इसे कभी-कभी कमजोर विकर्ण प्रभुत्व भी कहा जाता है। यदि सख्त असमानता (>) का उपयोग किया जाता है, तो इसे सख्त विकर्ण प्रभुत्व कहा जाता है। अयोग्य शब्द विकर्ण प्रभुत्व का अर्थ संदर्भ के आधार पर सख्त और कमजोर विकर्ण प्रभुत्व दोनों हो सकता है।[1]
भिन्नताएँ
पहले पैराग्राफ की परिभाषा प्रत्येक पंक्ति में प्रविष्टियों का योग करती है। इसलिए इसे कभी-कभी पंक्ति विकर्ण प्रभुत्व भी कहा जाता है। यदि कोई प्रत्येक स्तंभ का योग करने के लिए परिभाषा बदलता है, तो इसे स्तंभ विकर्ण प्रभुत्व कहा जाता है।
कोई भी कड़ाई से विकर्ण रूप से प्रभावी मैट्रिक्स तुच्छ रूप से एक कमजोर रूप से श्रृंखलाबद्ध विकर्ण रूप से प्रमुख मैट्रिक्स है। कमजोर रूप से जंजीर वाले विकर्ण रूप से प्रमुख मैट्रिक्स गैर-एकवचन होते हैं और इसमें अपरिवर्तनीय रूप से विकर्ण रूप से प्रमुख मैट्रिक्स का परिवार शामिल होता है। ये इरेड्यूसिबल (गणित) मैट्रिक्स हैं जो कमजोर रूप से विकर्ण रूप से प्रभावी हैं, लेकिन कम से कम एक पंक्ति में सख्ती से विकर्ण रूप से प्रभावी हैं।
उदाहरण
गणित का सवाल
विकर्णतः प्रभावी है क्योंकि
- तब से
- तब से
- तब से .
गणित का सवाल
विकर्णतः प्रभावी नहीं है क्योंकि
- तब से
- तब से
- तब से .
अर्थात्, पहली और तीसरी पंक्तियाँ विकर्ण प्रभुत्व की स्थिति को पूरा करने में विफल रहती हैं।
गणित का सवाल
सख्ती से विकर्ण रूप से प्रभावशाली है क्योंकि
- तब से
- तब से
- तब से .
अनुप्रयोग और गुण
निम्नलिखित परिणामों को गेर्शगोरिन वृत्त प्रमेय|गेर्शगोरिन वृत्त प्रमेय से तुच्छ रूप से सिद्ध किया जा सकता है। गेर्शगोरिन के वृत्त प्रमेय का अपने आप में एक बहुत ही संक्षिप्त प्रमाण है।
एक कड़ाई से विकर्ण रूप से प्रमुख मैट्रिक्स (या एक अपरिवर्तनीय रूप से विकर्ण रूप से प्रमुख मैट्रिक्स[2]) एकवचन मैट्रिक्स है|गैर-एकवचन।
एक हर्मिटियन मैट्रिक्स विकर्ण रूप से प्रभावशाली मैट्रिक्स वास्तविक गैर-नकारात्मक विकर्ण प्रविष्टियों के साथ सकारात्मक अर्धनिश्चित मैट्रिक्स है। यह आइगेनवैल्यू के वास्तविक होने और गेर्शगोरिन के सर्कल प्रमेय से अनुसरण करता है। यदि समरूपता की आवश्यकता समाप्त हो जाती है, तो ऐसा मैट्रिक्स आवश्यक रूप से सकारात्मक अर्धनिश्चित नहीं है। उदाहरण के लिए, विचार करें
हालाँकि, इसके eigenvalues के वास्तविक भाग गेर्शगोरिन के सर्कल प्रमेय द्वारा गैर-नकारात्मक रहते हैं।
इसी प्रकार, वास्तविक सकारात्मक विकर्ण प्रविष्टियों के साथ एक हर्मिटियन सख्ती से विकर्ण रूप से प्रमुख मैट्रिक्स सकारात्मक निश्चित मैट्रिक्स है।
गाउस विलोपन (एलयू फ़ैक्टराइज़ेशन) निष्पादित करते समय सख्ती से कॉलम विकर्ण रूप से प्रभावशाली मैट्रिक्स के लिए कोई (आंशिक) धुरी तत्व आवश्यक नहीं है।
एक रेखीय प्रणाली को हल करने के लिए जैकोबी विधि और गॉस-सीडेल विधियाँ अभिसरण होती हैं यदि मैट्रिक्स सख्ती से (या अपरिवर्तनीय रूप से) विकर्ण रूप से प्रभावशाली है।
परिमित तत्व विधियों में उत्पन्न होने वाले कई मैट्रिक्स विकर्ण रूप से प्रभावशाली होते हैं।
विकर्ण प्रभुत्व के विचार पर एक मामूली बदलाव का उपयोग यह साबित करने के लिए किया जाता है कि टेम्परली-लीब बीजगणित में लूप के बिना आरेखों पर युग्मन गैर-अपक्षयी है।[3] बहुपद प्रविष्टियों वाले मैट्रिक्स के लिए, विकर्ण प्रभुत्व की एक समझदार परिभाषा यदि उच्चतम शक्ति है प्रत्येक पंक्ति में दिखाई देने वाला केवल विकर्ण पर दिखाई देता है। (बड़े मूल्यों पर ऐसे मैट्रिक्स का मूल्यांकन उपरोक्त अर्थ में विकर्ण रूप से प्रभावशाली हैं।)
टिप्पणियाँ
- ↑ For instance, Horn and Johnson (1985, p. 349) use it to mean weak diagonal dominance.
- ↑ Horn and Johnson, Thm 6.2.27.
- ↑ K.H. Ko and L. Smolinski (1991). "A combinatorial matrix in 3-manifold theory". Pacific J. Math. 149: 319–336.
संदर्भ
- Golub, Gene H.; Van Loan, Charles F. (1996). Matrix Computations. ISBN 0-8018-5414-8.
- Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis (Paperback ed.). Cambridge University Press. ISBN 0-521-38632-2.