निक्षेपण (एरोसोल भौतिकी)

From Vigyanwiki
Revision as of 17:33, 24 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Process by which aerosol particles collect onto solid surfaces}} {{refimprove|date=August 2012}} एरोसोल के भौतिकी में,...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

एरोसोल के भौतिकी में, जमाव वह प्रक्रिया है जिसके द्वारा एयरोसोल कण ठोस सतहों पर खुद को इकट्ठा या जमा करते हैं, जिससे हवा में कणों की सांद्रता कम हो जाती है। इसे दो उप-प्रक्रियाओं में विभाजित किया जा सकता है: सूखा और गीला जमाव। मध्यवर्ती आकार के कणों के लिए जमाव की दर या जमाव वेग सबसे धीमी होती है। निक्षेपण की क्रियाविधि बहुत छोटे या बहुत बड़े कणों के लिए सर्वाधिक प्रभावी होती है। बहुत बड़े कण अवसादन (बसने) या एरोसोल प्रभाव प्रक्रियाओं के माध्यम से जल्दी से बाहर निकल जाएंगे, जबकि एक प्रकार कि गति का छोटे कणों पर सबसे अधिक प्रभाव पड़ता है।[1] ऐसा इसलिए है क्योंकि बहुत छोटे कण कुछ घंटों में जम जाते हैं जब तक कि वे 0.5 माइक्रोमीटर के व्यास तक नहीं पहुंच जाते। इस आकार में वे अब जमते नहीं हैं।[2] इससे हवा में मौजूद पीएम-2.5 की मात्रा पर काफी असर पड़ता है.

निक्षेपण वेग को परिभाषित किया गया है F = vc, कहाँ F फ्लक्स घनत्व है, v निक्षेपण वेग है और c एकाग्रता है. गुरुत्वाकर्षण निक्षेपण में, यह वेग गुरुत्वाकर्षण-प्रेरित खिंचाव (बल) के कारण स्थिरीकरण वेग है।

अक्सर इस बात का अध्ययन किया जाता है कि कोई निश्चित कण किसी निश्चित बाधा से प्रभावित होगा या नहीं। इसका अनुमान स्टोक्स संख्या से लगाया जा सकता है Stk = S / d, कहाँ S रुकने की दूरी है (जो कण आकार, वेग और ड्रैग फोर्स पर निर्भर करती है), और d विशेषता लंबाई (अक्सर बाधा का व्यास) है। यदि का मान Stk 1 से कम है तो कण उस बाधा से नहीं टकराएगा। हालाँकि, यदि का मान Stk 1 से बड़ा है, यह होगा।

ब्राउनियन गति के कारण जमाव फ़िक के प्रसार के नियम|फ़िक के पहले और दूसरे नियम दोनों का पालन करता है। परिणामी निक्षेपण प्रवाह को इस प्रकार परिभाषित किया गया है , कहाँ J निक्षेपण प्रवाह है, n प्रारंभिक संख्या घनत्व है, D प्रसार स्थिरांक है और t यह समय है। इसे समय के प्रत्येक क्षण में एकाग्रता निर्धारित करने के लिए एकीकृत किया जा सकता है।

शुष्क निक्षेप

चित्र 1 - प्रभाव
चित्र 2 - प्रसार

शुष्क निक्षेपण के कारण होता है:

  • एयरोसोल प्रभाव. यह तब होता है जब एक बड़ी बाधा से टकराने वाले छोटे कण अपनी जड़ता के कारण प्रवाह की घुमावदार धारा रेखाओं का पालन करने में सक्षम नहीं होते हैं, इसलिए वे बूंद से टकराते हैं या प्रभावित करते हैं। बड़े कणों का सामना करने वाले छोटे कणों का द्रव्यमान जितना बड़ा होगा, प्रवाह स्ट्रीमलाइन से विस्थापन उतना ही अधिक होगा।
  • गुरुत्वाकर्षण अवसादन - गुरुत्वाकर्षण के कारण नीचे गिरने वाले कणों का जमाव।
  • अवरोधन. ऐसा तब होता है जब छोटे कण स्ट्रीमलाइन का अनुसरण करते हैं, लेकिन यदि वे किसी बाधा के बहुत करीब बहते हैं, तो वे टकरा सकते हैं (उदाहरण के लिए पेड़ की एक शाखा)।
  • अशांति. वायु स्थानांतरण कणों में अशांत एड़ी (द्रव गतिशीलता) जो टकरा सकते हैं। पुनः, निम्न सांद्रता की ओर शुद्ध प्रवाह होता है।
  • अन्य प्रक्रियाएं, जैसे: थर्मोफोरेसिस, टर्बोफोरेसिस, डिफ्यूज़ियोफोरेसिस और वैद्युतकणसंचलन

गीला जमाव

गीले जमाव में, वर्षा (मौसम विज्ञान) (बारिश की बूंदें, बर्फ आदि) एरोसोल कणों को नष्ट कर देती है। इसका मतलब यह है कि गीला जमाव गुरुत्वाकर्षण, ब्राउनियन और/या पानी के साथ अशांत जमावट है। विभिन्न प्रकार के गीले जमाव में शामिल हैं:

  • नीचे-बादल सफाई। ऐसा तब होता है जब गिरती हुई बारिश की बूंदें या बर्फ के कण ब्राउनियन प्रसार, अवरोधन, प्रभाव और अशांत प्रसार के माध्यम से एयरोसोल कणों से टकराते हैं।
  • इन-क्लाउड सफ़ाई। यह वह जगह है जहां एरोसोल कण बादल के नाभिक के रूप में काम करते हुए या टकराव के माध्यम से उनके द्वारा पकड़े जाने के माध्यम से बादल की बूंदों या बादल के बर्फ के क्रिस्टल में प्रवेश करते हैं। जब बारिश या बर्फ के बादल बनते हैं तो इन्हें जमीन की सतह पर लाया जा सकता है। एरोसोल कंप्यूटर मॉडल के भीतर एरोसोल और क्लाउड बूंदों को ज्यादातर अलग-अलग माना जाता है ताकि केंद्रक एक हानि प्रक्रिया का प्रतिनिधित्व करता है जिसे पैरामीट्रिजेशन (वायुमंडलीय मॉडलिंग) करना पड़ता है।

यह भी देखें

संदर्भ

  1. Seinfeld, John; Spyros Pandis (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Second ed.). Hoboken, New Jersey: John Wiley & Sons, Inc. ISBN 0-471-72018-6.
  2. Mishchuk, Nataliya A. (2004). "Chapter 9 - Coalescence kinetics of Brownian emulsions". Interface Science and Technology (D.N. Petsev ed.). Elsevier. 4: 351–390. doi:10.1016/S1573-4285(04)80011-5. ISBN 9780120884995.