समतल तरंग
भौतिकी में, समतल तरंग तरंग (भौतिकी) या क्षेत्र (भौतिकी) का विशेष मामला है: भौतिक मात्रा जिसका मूल्य, किसी भी क्षण, किसी भी विमान के माध्यम से स्थिर होता है जो अंतरिक्ष में निश्चित दिशा के लंबवत होता है।[1]
किसी भी पद के लिए अंतरिक्ष में और किसी भी समय , ऐसे फ़ील्ड का मान इस प्रकार लिखा जा सकता है
कहाँ इकाई वेक्टर है| इकाई-लंबाई वेक्टर, और फ़ंक्शन है जो फ़ील्ड का मान केवल दो वास्तविक संख्या मापदंडों पर निर्भर करता है: समय , और अदिश-मान विस्थापन (ज्यामिति) मुद्दे की दिशा के साथ . प्रत्येक लंबवत तल पर विस्थापन स्थिर रहता है .
क्षेत्र के मूल्य अदिश, सदिश, या कोई अन्य भौतिक या गणितीय मात्रा हो सकती है। वे समष्टि संख्याएँ हो सकती हैं, जैसे कि साइनसॉइडल_प्लेन_वेव कॉम्प्लेक्स_एक्सपोनेंशियल_फॉर्म।
जब के मान वेक्टर हैं, तरंग को अनुदैर्ध्य तरंग कहा जाता है यदि वेक्टर हमेशा वेक्टर के साथ संरेख होते हैं , और अनुप्रस्थ तरंग यदि वे हमेशा इसके ओर्थोगोनल (लंबवत) हों।
विशेष प्रकार
यात्रा विमान तरंग
प्रायः समतल तरंग शब्द विशेष रूप से यात्राशील समतल तरंग को संदर्भित करता है, जिसके समय में विकास को स्थिर चरण वेग पर क्षेत्र के सरल अनुवाद के रूप में वर्णित किया जा सकता है। तरंगाग्रों के लंबवत दिशा में। ऐसे फ़ील्ड को इस प्रकार लिखा जा सकता है
कहाँ अब यह एकल वास्तविक पैरामीटर का फ़ंक्शन है , जो तरंग की प्रोफ़ाइल, अर्थात् समय पर क्षेत्र के मूल्य का वर्णन करता है , प्रत्येक विस्थापन के लिए . उस स्थितियों में, प्रसार की दिशा कहलाती है। प्रत्येक विस्थापन के लिए , गतिमान तल लंबवत दूरी पर मूल से तरंगाग्र कहलाता है। यह विमान प्रसार की दिशा में यात्रा करता है वेग के साथ ; और फिर फ़ील्ड का मान उसके प्रत्येक बिंदु पर समान और समय में स्थिर रहता है।[2]
साइनसॉइडल समतल तरंग
इस शब्द का उपयोग, और भी अधिक विशेष रूप से, मोनोक्रोमैटिक या साइनसॉइडल समतल तरंग के लिए किया जाता है: यात्रा करने वाली प्लेन तरंग जिसकी प्रोफ़ाइल एक sinusoidal फ़ंक्शन है। वह है,
पैरामीटर , जो अदिश या सदिश हो सकता है, तरंग का आयाम कहलाता है; अदिश गुणांक इसकी स्थानिक आवृत्ति है; और अदिश इसका चरण है.
एक सच्ची समतल तरंग भौतिक रूप से अस्तित्व में नहीं हो सकती, क्योंकि उसे सारा स्थान भरना होगा। फिर भी, समतल तरंग मॉडल भौतिकी में महत्वपूर्ण और व्यापक रूप से उपयोग किया जाता है। अंतरिक्ष के बड़े सजातीय क्षेत्र में सीमित सीमा वाले किसी भी स्रोत द्वारा उत्सर्जित तरंगों को समतल तरंगों द्वारा अच्छी तरह से अनुमानित किया जा सकता है जब उस क्षेत्र के किसी भी हिस्से को देखा जाता है जो स्रोत से इसकी दूरी की तुलना में पर्याप्त रूप से छोटा होता है। उदाहरण के लिए, दूर के तारे से आने वाली प्रकाश तरंगें दूरबीन तक पहुंचती हैं।
[[विमान खड़ी लहर]]
स्टैंडिंग वेव ऐसा क्षेत्र है जिसका मूल्य दो कार्यों के उत्पाद के रूप में व्यक्त किया जा सकता है, केवल स्थिति पर निर्भर करता है, दूसरा केवल समय पर। विशेष रूप से, समतल खड़ी तरंग को इस प्रकार व्यक्त किया जा सकता है
कहाँ अदिश पैरामीटर (विस्थापन) का फलन है ) अदिश या सदिश मानों के साथ, और समय का अदिश फलन है.
यह प्रतिनिधित्व अद्वितीय नहीं है, क्योंकि यदि समान फ़ील्ड मान प्राप्त होते हैं और पारस्परिक कारकों द्वारा मापे जाते हैं। अगर रुचि के समय अंतराल में बंधा हुआ है (जो सामान्यतः भौतिक संदर्भों में होता है), और का अधिकतम मान बढ़ाने के लिए स्केल किया जा सकता है है 1. फिर बिंदु पर देखा गया अधिकतम क्षेत्र परिमाण होगा .
गुण
दिशा वेक्टर के लंबवत दिशाओं को अनदेखा करके समतल तरंग का अध्ययन किया जा सकता है ; अर्थात्, फ़ंक्शन पर विचार करके आयामी माध्यम में तरंग के रूप में।
कोई भी स्थानीय ऑपरेटर, चाहे रैखिक ऑपरेटर हो या नहीं, समतल तरंग पर लागू होने पर समतल तरंग उत्पन्न होती है। समान सामान्य सदिश के साथ समतल तरंगों का कोई रैखिक संयोजन यह भी समतल तरंग है.
दो या तीन आयामों में अदिश समतल तरंग के लिए, क्षेत्र की ढाल हमेशा दिशा के साथ संरेख होती है ; विशेष रूप से, , कहाँ का आंशिक व्युत्पन्न है पहले तर्क के संबंध में.
वेक्टर-मूल्यवान समतल तरंग का विचलन केवल वेक्टर के प्रक्षेपण पर निर्भर करता है दिशा में . विशेष रूप से,
विशेष रूप से, अनुप्रस्थ तलीय तरंग संतुष्ट करती है सभी के लिए और .
यह भी देखें
- विमान तरंग विस्तार
- सरलरेखीय प्रसार
- तरंग समीकरण
- वेइल विस्तार
संदर्भ
- ↑ Brekhovskikh 1980, p. 1-3.
- ↑ Jackson 1998, p. 296.
स्रोत
- ब्रेखोव्स्किख, L. (1980). स्तरित मीडिया में लहरें (2 ed.). न्यूयॉर्क: अकादमिक प्रेस. ISBN 9780323161626.
- जैक्सन, जॉन डेविड (1998). क्लासिक बिजली का गतिविज्ञान (3 ed.). न्यूयॉर्क: विली. ISBN 9780471309321.
श्रेणी:तरंग यांत्रिकी
श्रेणी:विमान (ज्यामिति)