कम-घनत्व समता-जाँच कोड

From Vigyanwiki
Revision as of 19:50, 25 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Linear error correcting code}} {{Use American English|date = March 2019}} {{Use mdy dates|date = March 2019}} सूचना सिद्धांत...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

सूचना सिद्धांत में, कम-घनत्व समता-जांच (एलडीपीसी) कोड एक रैखिक कोड त्रुटि सुधार कोड है, जो संकेत शोर ट्रांसमिशन चैनल पर एक संदेश प्रसारित करने की एक विधि है।[1][2] एक एलडीपीसी कोड एक विरल टान्नर ग्राफ (द्विपक्षीय ग्राफ का उपवर्ग) का उपयोग करके बनाया गया है।[3] एलडीपीसी कोड हैं:श्रेणी:क्षमता-अनुमोदन कोड|क्षमता-अनुमोदन कोड, जिसका अर्थ है कि व्यावहारिक निर्माण मौजूद हैं जो एक सममित स्मृतिहीन चैनल के लिए शोर सीमा को सैद्धांतिक अधिकतम (शैनन-हार्टले प्रमेय) के बहुत करीब सेट करने की अनुमति देते हैं। शोर सीमा चैनल शोर के लिए ऊपरी सीमा को परिभाषित करती है, जहां तक ​​खोई हुई जानकारी की संभावना को इच्छानुसार छोटा किया जा सकता है। पुनरावृत्तीय विश्वास प्रसार तकनीकों का उपयोग करके, एलडीपीसी कोड को उनकी ब्लॉक लंबाई के रैखिक समय में डिकोड किया जा सकता है।

खराब शोर की उपस्थिति में बैंडविड्थ-बाधित या रिटर्न-चैनल-बाधित लिंक पर विश्वसनीय और अत्यधिक कुशल सूचना हस्तांतरण की आवश्यकता वाले अनुप्रयोगों में एलडीपीसी कोड का उपयोग बढ़ रहा है। एलडीपीसी कोड का कार्यान्वयन अन्य कोड, विशेषकर टर्बो कोड से पिछड़ गया है। टर्बो कोड के लिए मौलिक पेटेंट 29 अगस्त 2013 को समाप्त हो गया।[4][5] एलडीपीसी कोड को रॉबर्ट जी गैलगर के सम्मान में गैलगर कोड के रूप में भी जाना जाता है, जिन्होंने 1960 में मैसाचुसेट्स की तकनीकी संस्था में अपने डॉक्टरेट शोध प्रबंध में एलडीपीसी अवधारणा विकसित की थी।[6][7] एलडीपीसी कोड में आदर्श संयोजन गुण भी दिखाए गए हैं। अपने शोध प्रबंध में, गैलागर ने दिखाया कि एलडीपीसी कोड उच्च संभावना वाले बाइनरी क्षेत्रों पर रैखिक कोड के लिए बाध्य गिल्बर्ट-वार्शमोव को प्राप्त करते हैं। 2020 में यह दिखाया गया कि गैलेजर के एलडीपीसी कोड सूची डिकोडिंग क्षमता प्राप्त करते हैं और सामान्य क्षेत्रों पर रैखिक कोड के लिए बाध्य गिल्बर्ट-वार्शमोव भी प्राप्त करते हैं। [8]


इतिहास

1963 में रॉबर्ट जी. गैलागर द्वारा पहली बार विकसित होने पर इसे लागू करना अव्यावहारिक था।[9] 1996 में उनका काम दोबारा खोजे जाने तक एलडीपीसी कोड भुला दिए गए थे।[10] टर्बो कोड, 1993 में खोजे गए क्षमता-अनुरूप कोड का एक और वर्ग, 1990 के दशक के अंत में पसंद की कोडिंग योजना बन गया, जिसका उपयोग डीप स्पेस नेटवर्क और उपग्रह संचार जैसे अनुप्रयोगों के लिए किया जाता था। हालाँकि, कम-घनत्व समता-जाँच कोड में प्रगति ने उन्हें त्रुटि स्तर और उच्च कोड दर सीमा में प्रदर्शन के मामले में टर्बो कोड से आगे निकलते देखा है, जिससे टर्बो कोड केवल कम कोड दरों के लिए बेहतर अनुकूल हो गए हैं।[11]


अनुप्रयोग

2003 में, एक रिपीट-एक्युमुलेट कोड#इररेगुलर रिपीट एक्युमुलेट कोड्स (आईआरए) स्टाइल एलडीपीसी कोड छह टर्बो कोड को हराकर डिजिटल टेलीविजन के लिए नए डीवीबी-एस 2 मानक में त्रुटि-सुधार करने वाला कोड बन गया।[12] DVB-S2 चयन समिति ने समानांतर डिकोडर आर्किटेक्चर के बजाय बहुत कम कुशल सीरियल डिकोडर आर्किटेक्चर का उपयोग करके टर्बो कोड प्रस्तावों के लिए डिकोडर जटिलता अनुमान लगाया। इसने टर्बो कोड प्रस्तावों को एलडीपीसी प्रस्तावों के आधे फ्रेम आकार के क्रम पर फ्रेम आकार का उपयोग करने के लिए मजबूर किया।[citation needed]

2008 में, LDPC ने ITU-T G.hn मानक के लिए आगे त्रुटि सुधार (FEC) सिस्टम के रूप में कन्वेन्शनल टर्बो कोड को हराया।[13] G.hn ने टर्बो कोड की तुलना में LDPC कोड को उनकी कम डिकोडिंग जटिलता के कारण चुना (विशेषकर जब 1.0 Gbit/s के करीब डेटा दरों पर काम कर रहा हो) और क्योंकि प्रस्तावित टर्बो कोड ने ऑपरेशन की वांछित सीमा पर एक महत्वपूर्ण त्रुटि स्तर प्रदर्शित किया।[14] एलडीपीसी कोड का उपयोग 10GBASE-T ईथरनेट के लिए भी किया जाता है, जो ट्विस्टेड-पेयर केबल पर 10 गीगाबिट प्रति सेकंड पर डेटा भेजता है। 2009 तक, हाई थ्रूपुट (HT) PHY विनिर्देश में, LDPC कोड 802.11n और 802.11ac के वैकल्पिक भाग के रूप में वाई-फाई 802.11 मानक का भी हिस्सा हैं।[15] एलडीपीसी 802.11ax (वाई-फाई 6) का एक अनिवार्य हिस्सा है।[16] कुछ ओएफडीएम सिस्टम एक अतिरिक्त बाहरी त्रुटि सुधार जोड़ते हैं जो कभी-कभी होने वाली त्रुटियों (त्रुटि स्तर) को ठीक करता है जो कम बिट त्रुटि दर पर भी एलडीपीसी सुधार आंतरिक कोड से आगे निकल जाता है।

उदाहरण के लिए: एलडीपीसी कोडेड मॉड्यूलेशन (आरएस-एलसीएम) के साथ रीड-सोलोमन कोड रीड-सोलोमन बाहरी कोड का उपयोग करता है।[17] DVB-S2, DVB-T2 और DVB-C2 मानक सभी LDPC डिकोडिंग के बाद अवशिष्ट त्रुटियों को मिटाने के लिए BCH कोड बीसीएच कोड का उपयोग करते हैं।[18] 5जी नं नियंत्रण चैनलों के लिए पोलर कोड (कोडिंग सिद्धांत) और डेटा चैनलों के लिए एलडीपीसी का उपयोग करता है।[19][20] यद्यपि एलडीपीसी कोड को वाणिज्यिक हार्ड डिस्क ड्राइव में सफलता मिली है, एसएसडी में इसकी त्रुटि सुधार क्षमता का पूरी तरह से फायदा उठाने के लिए अपरंपरागत बारीक फ्लैश मेमोरी सेंसिंग की आवश्यकता होती है, जिससे मेमोरी रीड विलंबता में वृद्धि होती है। एलडीपीसी-इन-एसएसडी[21] बहुत कम विलंबता वृद्धि के साथ एसएसडी में एलडीपीसी को तैनात करने का एक प्रभावी तरीका है, जो एसएसडी में एलडीपीसी को वास्तविकता में बदल देता है। तब से, एलडीपीसी को प्रमुख भंडारण विक्रेताओं द्वारा ग्राहक-ग्रेड और एंटरप्राइज़-ग्रेड दोनों में वाणिज्यिक एसएसडी में व्यापक रूप से अपनाया गया है। कई टीएलसी (और बाद के) एसएसडी एलडीपीसी कोड का उपयोग कर रहे हैं। सबसे पहले एक तेज़ हार्ड-डिकोड (बाइनरी इरेज़र) का प्रयास किया जाता है, जो धीमी लेकिन अधिक शक्तिशाली सॉफ्ट डिकोडिंग में वापस आ सकता है।[22]


परिचालन उपयोग

एलडीपीसी कोड कार्यात्मक रूप से विरल समता-जांच मैट्रिक्स द्वारा परिभाषित किए जाते हैं। यह विरल मैट्रिक्स अक्सर यादृच्छिक रूप से उत्पन्न होता है, विरलता बाधाओं के अधीन - #कोड निर्माण पर चर्चा की जाती है #कोड निर्माण। ये कोड पहली बार 1960 में रॉबर्ट गैलागर द्वारा डिज़ाइन किए गए थे।[7]

नीचे फ़ैक्टर ग्राफ़|फ़ोर्नी के फ़ैक्टर ग्राफ़ नोटेशन का उपयोग करते हुए एक उदाहरण एलडीपीसी कोड का ग्राफ़ टुकड़ा दिया गया है। इस ग्राफ़ में, ग्राफ़ के शीर्ष में n वैरिएबल नोड्स ग्राफ़ के निचले भाग में (n−k) बाधा नोड्स से जुड़े हुए हैं।

यह (एन,के) एलडीपीसी कोड को ग्राफ़िक रूप से प्रस्तुत करने का एक लोकप्रिय तरीका है। एक वैध संदेश के बिट्स, जब ग्राफ़ के शीर्ष पर 'टी' पर रखे जाते हैं, तो ग्राफिकल बाधाओं को पूरा करते हैं। विशेष रूप से, एक वेरिएबल नोड ('=' चिन्ह वाला बॉक्स) से जुड़ने वाली सभी पंक्तियों का मान समान होता है, और कारक नोड ('+' चिन्ह वाला बॉक्स) से जुड़ने वाले सभी मानों का योग, मॉड्यूलर अंकगणितीय दो, शून्य तक होना चाहिए (दूसरे शब्दों में, उन्हें एक सम संख्या में योग करना चाहिए; या विषम मानों की एक सम संख्या होनी चाहिए)।

Ldpc code fragment factor graph.svg

तस्वीर से बाहर जाने वाली किसी भी लाइन को नजरअंदाज करते हुए, वैध कोडवर्ड के अनुरूप आठ संभावित छह-बिट स्ट्रिंग हैं: (यानी, 000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111)। यह एलडीपीसी कोड खंड छह बिट्स के रूप में एन्कोडेड तीन-बिट संदेश का प्रतिनिधित्व करता है। चैनल त्रुटियों से उबरने की संभावना बढ़ाने के लिए, यहां अतिरेक का उपयोग किया जाता है। यह एक (6, 3) रैखिक कोड है, जिसमें n = 6 और k = 3 है।

चित्र से बाहर जाने वाली रेखाओं को फिर से अनदेखा करते हुए, समता-जाँच मैट्रिक्स इस ग्राफ़ खंड का प्रतिनिधित्व करता है

इस मैट्रिक्स में, प्रत्येक पंक्ति तीन समता-जांच बाधाओं में से एक का प्रतिनिधित्व करती है, जबकि प्रत्येक कॉलम प्राप्त कोडवर्ड में छह बिट्स में से एक का प्रतिनिधित्व करता है।

इस उदाहरण में, समता-जांच मैट्रिक्स एच को इस फॉर्म में डालकर आठ कोडवर्ड प्राप्त किए जा सकते हैं GF(2) में बुनियादी पंक्ति संचालन के माध्यम से:

चरण 1: एच.

चरण 2: पंक्ति 1 को पंक्ति 3 में जोड़ा जाता है।

चरण 3: पंक्ति 2 और 3 की अदला-बदली की जाती है।

चरण 4: पंक्ति 1 को पंक्ति 3 में जोड़ा जाता है।

इससे जनरेटर मैट्रिक्स G को इस प्रकार प्राप्त किया जा सकता है (ध्यान दें कि विशेष मामले में यह एक बाइनरी कोड है ), या विशेष रूप से:

अंत में, सभी आठ संभावित 3-बिट स्ट्रिंग्स को G से गुणा करने पर, सभी आठ वैध कोडवर्ड प्राप्त होते हैं। उदाहरण के लिए, बिट-स्ट्रिंग '101' के लिए कोडवर्ड इसके द्वारा प्राप्त किया जाता है:

,

कहाँ मॉड 2 गुणन का प्रतीक है।

जाँच के रूप में, G की पंक्ति का स्थान H के लिए ओर्थोगोनल है जैसे कि बिट-स्ट्रिंग '101' कोडवर्ड '101011' के पहले 3 बिट्स के रूप में पाई जाती है।

उदाहरण एन्कोडर

एलडीपीसी एनकोडर

एक फ्रेम के एन्कोडिंग के दौरान, इनपुट डेटा बिट्स (डी) को दोहराया जाता है और घटक एन्कोडर्स के एक सेट में वितरित किया जाता है। घटक एनकोडर आम तौर पर संचायक होते हैं और प्रत्येक संचायक का उपयोग समता प्रतीक उत्पन्न करने के लिए किया जाता है। मूल डेटा की एक प्रति (एस0,K-1) कोड प्रतीकों को बनाने के लिए समता बिट्स (पी) के साथ प्रेषित होता है। प्रत्येक घटक एनकोडर से एस बिट्स को हटा दिया जाता है।

समता बिट का उपयोग किसी अन्य घटक कोड के भीतर किया जा सकता है।

DVB-S2 रेट 2/3 कोड का उपयोग करते हुए एक उदाहरण में एन्कोडेड ब्लॉक का आकार 64800 प्रतीक (N=64800) है जिसमें 43200 डेटा बिट्स (K=43200) और 21600 पैरिटी बिट्स (M=21600) हैं। प्रत्येक घटक कोड (चेक नोड) पहले समता बिट को छोड़कर 16 डेटा बिट्स को एनकोड करता है जो 8 डेटा बिट्स को एनकोड करता है। पहले 4680 डेटा बिट्स को 13 बार दोहराया जाता है (13 समता कोड में उपयोग किया जाता है), जबकि शेष डेटा बिट्स 3 समता कोड (अनियमित एलडीपीसी कोड) में उपयोग किया जाता है।

तुलना के लिए, क्लासिक टर्बो कोड आमतौर पर समानांतर में कॉन्फ़िगर किए गए दो घटक कोड का उपयोग करते हैं, जिनमें से प्रत्येक डेटा बिट्स के संपूर्ण इनपुट ब्लॉक (K) को एन्कोड करता है। ये घटक एनकोडर मध्यम गहराई (8 या 16 राज्यों) के पुनरावर्ती कन्वेन्शनल कोड (आरएससी) हैं जो एक कोड इंटरलीवर द्वारा अलग किए जाते हैं जो फ्रेम की एक प्रति को इंटरलीव करता है।

इसके विपरीत, एलडीपीसी कोड, समानांतर में कई कम गहराई वाले घटक कोड (संचायक) का उपयोग करता है, जिनमें से प्रत्येक इनपुट फ्रेम के केवल एक छोटे हिस्से को एन्कोड करता है। कई घटक कोडों को कई कम गहराई (2 राज्य) कन्वेन्शनल कोड के रूप में देखा जा सकता है जो दोहराव और वितरण संचालन के माध्यम से जुड़े हुए हैं। दोहराव और वितरण ऑपरेशन टर्बो कोड में इंटरलीवर का कार्य करते हैं।

विभिन्न घटक कोडों के कनेक्शन को अधिक सटीक रूप से प्रबंधित करने की क्षमता और प्रत्येक इनपुट बिट के लिए अतिरेक का स्तर एलडीपीसी कोड के डिजाइन में अधिक लचीलापन देता है, जिससे कुछ मामलों में टर्बो कोड की तुलना में बेहतर प्रदर्शन हो सकता है। टर्बो कोड अभी भी कम कोड दरों पर एलडीपीसी से बेहतर प्रदर्शन करते प्रतीत होते हैं, या कम से कम अच्छा प्रदर्शन करने वाले कम दर कोड का डिज़ाइन टर्बो कोड के लिए आसान है।

व्यावहारिक बात के रूप में, संचायक बनाने वाले हार्डवेयर को एन्कोडिंग प्रक्रिया के दौरान पुन: उपयोग किया जाता है। अर्थात्, एक बार समता बिट्स का पहला सेट उत्पन्न हो जाता है और समता बिट्स संग्रहीत हो जाते हैं, उसी संचायक हार्डवेयर का उपयोग समता बिट्स का अगला सेट उत्पन्न करने के लिए किया जाता है।

डिकोडिंग

अन्य कोडों की तरह, द्विआधारी सममित चैनल पर एलडीपीसी कोड की अधिकतम संभावना डिकोडिंग एक एनपी-पूर्ण समस्या है। किसी भी उपयोगी आकार के एनपी-पूर्ण कोड के लिए इष्टतम डिकोडिंग करना व्यावहारिक नहीं है।

हालाँकि, पुनरावृत्तीय विश्वास प्रसार डिकोडिंग पर आधारित उप-इष्टतम तकनीकें उत्कृष्ट परिणाम देती हैं और इन्हें व्यावहारिक रूप से लागू किया जा सकता है। उप-इष्टतम डिकोडिंग तकनीक प्रत्येक समता जांच को देखती है जो एलडीपीसी को एक स्वतंत्र एकल समता जांच (एसपीसी) कोड के रूप में बनाती है। प्रत्येक एसपीसी कोड को सॉफ्ट-इन सॉफ्ट-आउट डिकोडर|सॉफ्ट-इन-सॉफ्ट-आउट (एसआईएसओ) तकनीकों जैसे सॉफ्ट आउटपुट विटर्बी एल्गोरिदम, बीसीजेआर एल्गोरिदम, मैक्सिमम ए पोस्टीरियरी अनुमान और उसके अन्य व्युत्पन्न का उपयोग करके अलग से डिकोड किया जाता है। प्रत्येक एसआईएसओ डिकोडिंग से नरम निर्णय जानकारी को क्रॉस-चेक किया जाता है और उसी सूचना बिट के अन्य अनावश्यक एसपीसी डिकोडिंग के साथ अद्यतन किया जाता है। प्रत्येक एसपीसी कोड को अद्यतन सॉफ्ट निर्णय जानकारी का उपयोग करके फिर से डिकोड किया जाता है। यह प्रक्रिया तब तक दोहराई जाती है जब तक कि एक वैध कोडवर्ड प्राप्त न हो जाए या डिकोडिंग समाप्त न हो जाए। इस प्रकार की डिकोडिंग को अक्सर सम-प्रोडक्ट डिकोडिंग के रूप में जाना जाता है।

एसपीसी कोड की डिकोडिंग को अक्सर चेक नोड प्रोसेसिंग के रूप में जाना जाता है, और वेरिएबल्स की क्रॉस-चेकिंग को अक्सर वेरिएबल-नोड प्रोसेसिंग के रूप में जाना जाता है।

व्यावहारिक एलडीपीसी डिकोडर कार्यान्वयन में, थ्रूपुट बढ़ाने के लिए एसपीसी कोड के सेट को समानांतर में डिकोड किया जाता है।

इसके विपरीत, बाइनरी इरेज़र चैनल पर विश्वास का प्रसार विशेष रूप से सरल है जहां इसमें पुनरावृत्त बाधा संतुष्टि शामिल है।

उदाहरण के लिए, मान लें कि उपरोक्त उदाहरण से मान्य कोडवर्ड, 101011, एक बाइनरी इरेज़र चैनल में प्रसारित होता है और ?01?11 प्राप्त करने के लिए पहले और चौथे बिट को मिटाकर प्राप्त किया जाता है। चूंकि प्रेषित संदेश को कोड की बाधाओं को पूरा करना होगा, इसलिए संदेश को कारक ग्राफ़ के शीर्ष पर प्राप्त संदेश लिखकर दर्शाया जा सकता है।

इस उदाहरण में, पहला बिट अभी भी पुनर्प्राप्त नहीं किया जा सकता है, क्योंकि इससे जुड़े सभी अवरोधों में एक से अधिक अज्ञात बिट हैं। संदेश को डिकोड करने के लिए आगे बढ़ने के लिए, मिटाए गए बिट्स में से केवल एक से कनेक्ट होने वाली बाधाओं की पहचान की जानी चाहिए। इस उदाहरण में, केवल दूसरा अवरोध ही पर्याप्त है। दूसरे अवरोध की जांच करने पर, चौथा बिट शून्य रहा होगा, क्योंकि उस स्थिति में केवल एक शून्य ही अवरोध को संतुष्ट करेगा।

फिर यह प्रक्रिया दोहराई जाती है. चौथे बिट के लिए नया मान अब पहले बिट को पुनर्प्राप्त करने के लिए पहले बाधा के साथ संयोजन में उपयोग किया जा सकता है जैसा कि नीचे देखा गया है। इसका मतलब यह है कि पहला बिट सबसे बाईं ओर की बाधा को पूरा करने वाला होना चाहिए।

Ldpc code fragment factor graph w erasures decode step 2.svg

इस प्रकार, संदेश को पुनरावृत्त रूप से डिकोड किया जा सकता है। अन्य चैनल मॉडल के लिए, वेरिएबल नोड्स और चेक नोड्स के बीच पारित संदेश वास्तविक संख्याएं हैं, जो विश्वास की संभावनाओं और संभावनाओं को व्यक्त करते हैं।

इस परिणाम को समता-जांच मैट्रिक्स एच द्वारा सही कोडवर्ड आर को गुणा करके मान्य किया जा सकता है:

चूँकि इस ऑपरेशन का परिणाम z (डिकोडिंग विधियाँ#सिंड्रोम डिकोडिंग) तीन × एक शून्य वेक्टर है, परिणामी कोडवर्ड r सफलतापूर्वक मान्य है।

डिकोडिंग पूरी होने के बाद, कोडवर्ड के पहले 3 बिट्स को देखकर मूल संदेश बिट्स '101' निकाला जा सकता है।

उदाहरणात्मक होते हुए भी, यह इरेज़र उदाहरण सॉफ्ट-डिसीजन डिकोडिंग या सॉफ्ट-डिसीजन संदेश पासिंग का उपयोग नहीं दिखाता है, जिसका उपयोग लगभग सभी वाणिज्यिक एलडीपीसी डिकोडर्स में किया जाता है।

नोड जानकारी अद्यतन करना

हाल के वर्षों में[when?], वैरिएबल-नोड और बाधा-नोड अद्यतन के लिए वैकल्पिक शेड्यूल के प्रभावों का अध्ययन करने में भी काफी काम किया गया है। एलडीपीसी कोड को डिकोड करने के लिए जिस मूल तकनीक का उपयोग किया गया था उसे बाढ़ के रूप में जाना जाता था। इस प्रकार के अद्यतन के लिए आवश्यक है कि, एक चर नोड को अद्यतन करने से पहले, सभी बाधा नोड्स को अद्यतन करने की आवश्यकता हो और इसके विपरीत। विला कैसाडो एट अल द्वारा बाद के काम में,[23] वैकल्पिक अद्यतन तकनीकों का अध्ययन किया गया, जिसमें परिवर्तनीय नोड्स को नवीनतम उपलब्ध चेक-नोड जानकारी के साथ अद्यतन किया जाता है।[citation needed]

इन एल्गोरिदम के पीछे अंतर्ज्ञान यह है कि वेरिएबल नोड्स जिनके मान सबसे अधिक भिन्न होते हैं, उन्हें पहले अद्यतन करने की आवश्यकता होती है। अत्यधिक विश्वसनीय नोड्स, जिनका लॉग-संभावना अनुपात (एलएलआर) परिमाण बड़ा है और एक अपडेट से दूसरे अपडेट में महत्वपूर्ण रूप से नहीं बदलता है, उन्हें अन्य नोड्स के समान आवृत्ति के साथ अपडेट की आवश्यकता नहीं होती है, जिनके संकेत और परिमाण में अधिक व्यापक रूप से उतार-चढ़ाव होता है।[citation needed] ये शेड्यूलिंग एल्गोरिदम बाढ़ का उपयोग करने वाले एल्गोरिदम की तुलना में अभिसरण की अधिक गति और कम त्रुटि वाले फर्श दिखाते हैं। ये निचली त्रुटि मंजिलें सूचित गतिशील शेड्यूलिंग (आईडीएस) की क्षमता से हासिल की जाती हैं[23]निकट कोडवर्ड के फँसाने वाले सेटों पर काबू पाने के लिए एल्गोरिदम।[24] जब गैर-बाढ़ शेड्यूलिंग एल्गोरिदम का उपयोग किया जाता है, तो पुनरावृत्ति की एक वैकल्पिक परिभाषा का उपयोग किया जाता है। दर k/n के (n,k) LDPC कोड के लिए, एक पूर्ण पुनरावृत्ति तब होती है जब n चर और n − k बाधा नोड्स को अद्यतन किया गया है, इससे कोई फर्क नहीं पड़ता कि वे किस क्रम में अद्यतन किए गए थे।[citation needed]

कोड निर्माण

बड़े ब्लॉक आकारों के लिए, एलडीपीसी कोड आमतौर पर पहले डिकोडर्स के व्यवहार का अध्ययन करके बनाए जाते हैं। चूंकि ब्लॉक का आकार अनंत तक जाता है, एलडीपीसी डिकोडर्स को एक शोर सीमा दिखाई जा सकती है जिसके नीचे डिकोडिंग विश्वसनीय रूप से हासिल की जाती है, और जिसके ऊपर डिकोडिंग हासिल नहीं की जाती है,[25] बोलचाल की भाषा में इसे चट्टान प्रभाव कहा जाता है। इस सीमा को चेक नोड्स से आर्क और वेरिएबल नोड्स से आर्क का सर्वोत्तम अनुपात ढूंढकर अनुकूलित किया जा सकता है। इस सीमा को देखने के लिए एक अनुमानित ग्राफिकल दृष्टिकोण एक EXIT चार्ट है।[citation needed]

इस अनुकूलन के बाद एक विशिष्ट एलडीपीसी कोड का निर्माण दो मुख्य प्रकार की तकनीकों में आता है:[citation needed]

  • छद्म यादृच्छिक दृष्टिकोण
  • संयुक्त दृष्टिकोण

छद्म-यादृच्छिक दृष्टिकोण द्वारा निर्माण सैद्धांतिक परिणामों पर आधारित होता है, जो बड़े ब्लॉक आकार के लिए, एक यादृच्छिक निर्माण अच्छा डिकोडिंग प्रदर्शन देता है।[10]सामान्य तौर पर, छद्म यादृच्छिक कोड में जटिल एनकोडर होते हैं, लेकिन सर्वोत्तम डिकोडर वाले छद्म यादृच्छिक कोड में सरल एनकोडर हो सकते हैं।[26] यह सुनिश्चित करने में सहायता के लिए अक्सर विभिन्न बाधाएं लागू की जाती हैं कि अनंत ब्लॉक आकार की सैद्धांतिक सीमा पर अपेक्षित वांछित गुण एक सीमित ब्लॉक आकार पर होते हैं।[citation needed]

कॉम्बिनेटोरियल दृष्टिकोण का उपयोग छोटे ब्लॉक-आकार के एलडीपीसी कोड के गुणों को अनुकूलित करने या सरल एनकोडर के साथ कोड बनाने के लिए किया जा सकता है।[citation needed]

कुछ एलडीपीसी कोड रीड-सोलोमन कोड पर आधारित होते हैं, जैसे 10 गीगाबिट ईथरनेट मानक में उपयोग किया जाने वाला आरएस-एलडीपीसी कोड।[27] बेतरतीब ढंग से उत्पन्न एलडीपीसी कोड की तुलना में, संरचित एलडीपीसी कोड - जैसे कि डीवीबी-एस 2 मानक में प्रयुक्त एलडीपीसी कोड - में सरल और इसलिए कम लागत वाले हार्डवेयर हो सकते हैं - विशेष रूप से, कोड ऐसे निर्मित होते हैं कि एच मैट्रिक्स एक मैट्रिक्स का चक्कर लगाना है।[28] एलडीपीसी कोड बनाने का एक अन्य तरीका परिमित ज्यामिति का उपयोग करना है। यह विधि वाई. कोउ एट अल द्वारा प्रस्तावित की गई थी। 2001 में।[29]


एलडीपीसी कोड बनाम टर्बो कोड

एलडीपीसी कोड की तुलना अन्य शक्तिशाली कोडिंग योजनाओं से की जा सकती है, जैसे टर्बो कोड.[30] एक ओर, टर्बो कोड की बिट त्रुटि दर प्रदर्शन कम कोड सीमाओं से प्रभावित होती है।[31] एलडीपीसी कोड में न्यूनतम दूरी की कोई सीमा नहीं है,[32] इसका अप्रत्यक्ष अर्थ यह है कि एलडीपीसी कोड टर्बो कोड की तुलना में अपेक्षाकृत बड़ी कोड दरों (जैसे 3/4, 5/6, 7/8) पर अधिक कुशल हो सकते हैं। हालाँकि, एलडीपीसी कोड पूर्ण प्रतिस्थापन नहीं हैं: टर्बो कोड कम कोड दरों (जैसे 1/6, 1/3, 1/2) पर सबसे अच्छा समाधान हैं।[33][34]


यह भी देखें

लोग

सिद्धांत

अनुप्रयोग

  • जी.एचएन|जी.एचएन/जी.9960 (बिजली लाइनों, फोन लाइनों और समाक्षीय केबल पर नेटवर्किंग के लिए आईटीयू-टी मानक)
  • 802.3an या 10GBASE-T (ट्विस्टेड पेयर पर 10 गीगाबिट/सेकेंड ईथरनेट)
  • सीएमएमबी (चीन मल्टीमीडिया मोबाइल ब्रॉडकास्टिंग)
  • DVB-S2 / DVB-T2 / DVB-C2 (डिजिटल वीडियो प्रसारण, दूसरी पीढ़ी)
  • डीएमबी-टी/एच (डिजिटल वीडियो प्रसारण)[35]
  • वाइमैक्स (माइक्रोवेव संचार के लिए IEEE 802.16e मानक)
  • IEEE 802.11n-2009 (वाई-फ़ाई मानक)
  • डॉक्सिस 3.1
  • एटीएससी 3.0 (अगली पीढ़ी उत्तरी अमेरिका डिजिटल स्थलीय प्रसारण)
  • 3जीपीपी (5जी-एनआर डेटा चैनल)

अन्य क्षमता-अनुरूप कोड

संदर्भ

  1. David J.C. MacKay (2003) Information theory, Inference and Learning Algorithms, CUP, ISBN 0-521-64298-1, (also available online)
  2. Todd K. Moon (2005) Error Correction Coding, Mathematical Methods and Algorithms. Wiley, ISBN 0-471-64800-0 (Includes code)
  3. Amin Shokrollahi (2003) LDPC Codes: An Introduction
  4. US 5446747 
  5. NewScientist, Communication speed nears terminal velocity, by Dana Mackenzie, 9 July 2005
  6. Larry Hardesty (January 21, 2010). "Explained: Gallager codes". MIT News. Retrieved August 7, 2013.
  7. 7.0 7.1 [1] R. G. Gallager, "Low density parity check codes," IRE Trans. Inf. Theory, vol. IT-8, no. 1, pp. 21- 28, Jan. 1962.
  8. [2] J. Moshieff, N. Resch, N. Ron-Zewi, S. Silas, M. Wootters, "Low-density parity-check codes achieve list-decoding capacity," SIAM Journal on Computing, FOCS20-38-FOCS20-73.
  9. Robert G. Gallager (1963). कम घनत्व समता जाँच कोड (PDF). Monograph, M.I.T. Press. Retrieved August 7, 2013.
  10. 10.0 10.1 David J.C. MacKay and Radford M. Neal, "Near Shannon Limit Performance of Low Density Parity Check Codes," Electronics Letters, July 1996
  11. Telemetry Data Decoding, Design Handbook
  12. Presentation by Hughes Systems Archived 2006-10-08 at the Wayback Machine
  13. HomePNA Blog: G.hn, a PHY For All Seasons
  14. IEEE Communications Magazine paper on G.hn Archived 2009-12-13 at the Wayback Machine
  15. IEEE Standard, section 20.3.11.6 "802.11n-2009", IEEE, October 29, 2009, accessed March 21, 2011.
  16. "IEEE SA - IEEE 802.11ax-2021". IEEE Standards Association (in English). Retrieved May 22, 2022.
  17. Chih-Yuan Yang, Mong-Kai Ku. http://123seminarsonly.com/Seminar-Reports/029/26540350-Ldpc-Coded-Ofdm-Modulation.pdf "LDPC coded OFDM modulation for high spectral efficiency transmission"
  18. Nick Wells. "DVB-T2 in relation to the DVB-x2 Family of Standards" Archived 2013-05-26 at the Wayback Machine
  19. "5G Channel Coding" (PDF). Archived from the original (PDF) on December 6, 2018. Retrieved January 6, 2019.
  20. Maunder, Robert (September 2016). "A Vision for 5G Channel Coding" (PDF). Archived from the original (PDF) on December 6, 2018. Retrieved January 6, 2019.
  21. Kai Zhao, Wenzhe Zhao, Hongbin Sun, Tong Zhang, Xiaodong Zhang, and Nanning Zheng (2013). " LDPC-in-SSD: Making Advanced Error Correction Codes Work Effectively in Solid State Drives" (PDF). FAST' 13. pp. 243–256.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  22. "Soft-Decoding in LDPC based SSD Controllers". EE Times. 2015.
  23. 23.0 23.1 A.I. Vila Casado, M. Griot, and R.Wesel, "Informed dynamic scheduling for belief propagation decoding of LDPC codes," Proc. IEEE Int. Conf. on Comm. (ICC), June 2007.
  24. T. Richardson, "Error floors of LDPC codes," in Proc. 41st Allerton Conf. Comm., Control, and Comput., Monticello, IL, 2003.
  25. Thomas J. Richardson and M. Amin Shokrollahi and Rüdiger L. Urbanke, "Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes," IEEE Transactions on Information Theory, 47(2), February 2001
  26. Thomas J. Richardson and Rüdiger L. Urbanke, "Efficient Encoding of Low-Density Parity-Check Codes," IEEE Transactions on Information Theory, 47(2), February 2001
  27. Ahmad Darabiha, Anthony Chan Carusone, Frank R. Kschischang. "Power Reduction Techniques for LDPC Decoders"
  28. Zhengya Zhang, Venkat Anantharam, Martin J. Wainwright, and Borivoje Nikolic. "An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors".
  29. Y. Kou, S. Lin and M. Fossorier, "Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results," IEEE Transactions on Information Theory, vol. 47, no. 7, November 2001, pp. 2711- 2736.
  30. Tahir, B., Schwarz, S., & Rupp, M. (2017, May). BER comparison between Convolutional, Turbo, LDPC, and Polar codes. In 2017 24th International Conference on Telecommunications (ICT) (pp. 1-7). IEEE.
  31. Moon Todd, K. Error correction coding: mathematical methods and algorithms. 2005 by John Wiley & Sons. ISBN 0-471-64800-0. - p.614
  32. Moon Todd, K. Error correction coding: mathematical methods and algorithms. 2005 by John Wiley & Sons. ISBN 0-471-64800-0. - p.653
  33. Andrews, Kenneth S., et al. "The development of turbo and LDPC codes for deep-space applications." Proceedings of the IEEE 95.11 (2007): 2142-2156.
  34. Hassan, A.E.S., Dessouky, M., Abou Elazm, A. and Shokair, M., 2012. Evaluation of complexity versus performance for turbo code and LDPC under different code rates. Proc. SPACOMM, pp.93-98.
  35. "IEEE Spectrum: Does China Have the Best Digital Television Standard on the Planet?". spectrum.ieee.org. Archived from the original on December 12, 2009.


बाहरी संबंध

Template:CCSDS