अवशिष्ट एन्ट्रापी
This article needs additional citations for verification. (February 2016) (Learn how and when to remove this template message) |
अवशिष्ट एन्ट्रापी एक गैर-संतुलन अवस्था और पूर्ण शून्य के करीब किसी पदार्थ की क्रिस्टल अवस्था के बीच एन्ट्रापी में अंतर है। इस शब्द का उपयोग संघनित पदार्थ भौतिकी में कांच या प्लास्टिक क्रिस्टल के शून्य केल्विन पर एन्ट्रापी का वर्णन करने के लिए किया जाता है, जिसे क्रिस्टल अवस्था कहा जाता है, जिसका एन्ट्रापी ऊष्मप्रवैगिकी के तीसरे नियम के अनुसार शून्य है। यह तब होता है जब ठंडा होने पर सामग्री कई अलग-अलग राज्यों में मौजूद हो सकती है। सबसे आम गैर-संतुलन राज्य कांच का राज्य, कांच है।
एक सामान्य उदाहरण कार्बन मोनोआक्साइड का मामला है, जिसमें बहुत कम आणविक द्विध्रुवीय क्षण होता है। जैसा कि कार्बन मोनोऑक्साइड क्रिस्टल को पूर्ण शून्य तक ठंडा किया जाता है, कार्बन मोनोऑक्साइड के कुछ अणुओं के पास खुद को एक सही क्रिस्टल में संरेखित करने के लिए पर्याप्त समय होता है, (सभी कार्बन मोनोऑक्साइड अणु एक ही दिशा में उन्मुख होते हैं)। इस वजह से, क्रिस्टल एक राज्य में बंद है अलग-अलग संबंधित माइक्रोस्टेट (सांख्यिकीय यांत्रिकी), एक अवशिष्ट एन्ट्रापी दे रही है , शून्य के बजाय।
एक अन्य उदाहरण कोई अनाकार ठोस (कांच) है। इनमें अवशिष्ट एन्ट्रापी होती है, क्योंकि परमाणु-दर-परमाणु सूक्ष्म संरचना को मैक्रोस्कोपिक प्रणाली में विभिन्न तरीकों से बड़ी संख्या में व्यवस्थित किया जा सकता है।
इतिहास
अवशिष्ट एन्ट्रॉपी के पहले उदाहरणों में से एक को लिनस पॉलिंग ने पानी की बर्फ इह का वर्णन करने के लिए बताया था। पानी में, प्रत्येक ऑक्सीजन परमाणु दो हाइड्रोजन परमाणुओं से जुड़ा होता है। हालाँकि, जब पानी जम जाता है तो यह एक चतुष्कोणीय संरचना बनाता है जहाँ प्रत्येक ऑक्सीजन परमाणु में चार हाइड्रोजन पड़ोसी होते हैं (पड़ोसी पानी के अणुओं के कारण)। ऑक्सीजन परमाणुओं के बीच बैठे हाइड्रोजन परमाणुओं में कुछ हद तक स्वतंत्रता होती है जब तक कि प्रत्येक ऑक्सीजन परमाणु में दो हाइड्रोजन परमाणु होते हैं जो 'पास' होते हैं, इस प्रकार पारंपरिक एच बनाते हैं2ओ पानी का अणु। हालांकि, यह पता चला है कि इस विन्यास में बड़ी संख्या में पानी के अणुओं के लिए, हाइड्रोजन परमाणुओं में बड़ी संख्या में संभव विन्यास हैं जो 2-इन 2-आउट नियम को पूरा करते हैं (प्रत्येक ऑक्सीजन परमाणु के दो 'निकट' (या 'होने चाहिए) in') हाइड्रोजन परमाणु, और दो दूर (या 'बाहर') हाइड्रोजन परमाणु)। यह स्वतंत्रता पूर्ण शून्य तक मौजूद है, जिसे पहले एक पूर्ण एक प्रकार की कॉन्फ़िगरेशन के रूप में देखा गया था। इन एकाधिक विन्यासों का अस्तित्व (ओ-ओ अक्ष के साथ अभिविन्यास के प्रत्येक एच के लिए विकल्प) जो पूर्ण शून्य के नियमों को पूरा करते हैं (प्रत्येक ओ के लिए 2-इन 2-आउट) यादृच्छिकता, या दूसरे शब्दों में, एंट्रॉपी के बराबर है। इस प्रकार सिस्टम जो पूर्ण शून्य पर या उसके पास कई विन्यास ले सकते हैं, उन्हें अवशिष्ट एन्ट्रॉपी कहा जाता है।[1] हालांकि पानी की बर्फ पहली सामग्री थी जिसके लिए अवशिष्ट एन्ट्रापी प्रस्तावित की गई थी, अध्ययन के लिए पानी की बर्फ के शुद्ध दोष मुक्त क्रिस्टल तैयार करना आम तौर पर बहुत मुश्किल होता है। इस प्रकार अन्य प्रणालियों को खोजने के लिए बहुत अधिक शोध किया गया है जो अवशिष्ट एन्ट्रॉपी प्रदर्शित करते हैं। विशेष रूप से ज्यामितीय हताशा प्रणालियाँ अक्सर अवशिष्ट एन्ट्रापी प्रदर्शित करती हैं। एक महत्वपूर्ण उदाहरण स्पिन आइस है, जो एक ज्यामितीय रूप से कुंठित चुंबकीय सामग्री है जहां चुंबकीय परमाणुओं के चुंबकीय क्षणों में आइसिंग मॉडल | आइसिंग-जैसे चुंबकीय स्पिन होते हैं और कोने-साझा करने वाले टेट्राहेड्रा के नेटवर्क के कोनों पर स्थित होते हैं। इस प्रकार यह सामग्री पानी की बर्फ के समान है, इस अपवाद के साथ कि टेट्राहेड्रा के कोनों पर स्पिन टेट्राहेड्रा में या बाहर इंगित कर सकते हैं, जिससे पानी की बर्फ के समान 2-इन, 2-आउट नियम का उत्पादन होता है, और इसलिए वही अवशिष्ट एन्ट्रापी। ज्यामितीय रूप से निराश चुंबकीय सामग्री जैसे स्पिन बर्फ के दिलचस्प गुणों में से एक यह है कि अवशिष्ट एन्ट्रापी के स्तर को बाहरी चुंबकीय क्षेत्र के अनुप्रयोग द्वारा नियंत्रित किया जा सकता है। इस संपत्ति का उपयोग एक-शॉट प्रशीतन प्रणाली बनाने के लिए किया जा सकता है।
यह भी देखें
- बर्फ Ih#हाइड्रोजन विकार
- बर्फ के नियम
- ज्यामितीय हताशा
टिप्पणियाँ
- ↑ Pauling, Linus (1970). सामान्य रसायन शास्त्र. San Francisco: W.H.Freeman and Co. p. 433. ISBN 0716701480.
[Category:Thermodynamic entro