अर्ध-ऑर्थोगोनल आव्यूह

From Vigyanwiki
Revision as of 15:54, 24 July 2023 by alpha>Indicwiki (Created page with "{{refimprove|date=February 2014}} रैखिक बीजगणित में, एक अर्ध-ऑर्थोगोनल मैट्रिक्स वास्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

रैखिक बीजगणित में, एक अर्ध-ऑर्थोगोनल मैट्रिक्स वास्तविक संख्या प्रविष्टियों के साथ एक गैर-वर्ग मैट्रिक्स मैट्रिक्स (गणित) है जहां: यदि स्तंभों की संख्या पंक्तियों की संख्या से अधिक है, तो पंक्तियां ऑर्थोनॉर्मल वैक्टर हैं; लेकिन यदि पंक्तियों की संख्या स्तंभों की संख्या से अधिक है, तो स्तंभ ऑर्थोनॉर्मल वेक्टर हैं।

समान रूप से, एक गैर-वर्ग मैट्रिक्स अर्ध-ऑर्थोगोनल है यदि दोनों में से एक है

[1][2][3]

निम्नलिखित में, उस मामले पर विचार करें जहां A, m > n के लिए एक m × n मैट्रिक्स है। तब

यह तथ्य कि आइसोमेट्री गुण का तात्पर्य है

'R' में सभी x के लिएn.

उदाहरण के लिए, एक अर्ध-ऑर्थोगोनल मैट्रिक्स है।

एक अर्ध-ऑर्थोगोनल मैट्रिक्स A अर्ध-एकात्मक है (या तो Aए = I या AA = I) और या तो बाएँ-उलटा या दाएँ-उलटा (बाएँ-उलटा यदि इसमें स्तंभों की तुलना में अधिक पंक्तियाँ हैं, अन्यथा दाएँ-उलटा)। बाईं ओर से लागू एक रैखिक परिवर्तन के रूप में, स्तंभों की तुलना में अधिक पंक्तियों वाला एक अर्ध-ऑर्थोगोनल मैट्रिक्स वैक्टर के डॉट उत्पाद को संरक्षित करता है, और इसलिए यूक्लिडियन अंतरिक्ष की एक आइसोमेट्री के रूप में कार्य करता है, जैसे कि रोटेशन (गणित) या प्रतिबिंब (गणित)

संदर्भ

  1. Abadir, K.M., Magnus, J.R. (2005). Matrix Algebra. Cambridge University Press.
  2. Zhang, Xian-Da. (2017). Matrix analysis and applications. Cambridge University Press.
  3. Povey, Daniel, et al. (2018). "Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks." Interspeech.