माइक्रोविआ

From Vigyanwiki
Revision as of 08:42, 10 August 2023 by alpha>Adityak

अतिरिक्त पैकेजों के उच्च इनपुट/आउटपुट (I/O) घनत्व को समायोजित करने के लिए माइक्रोविआ का उपयोग उच्च घनत्व परपस्पर संबद्ध (इंटरकनेक्ट) (एचडीआई) सब्सट्रेट्स और प्रिंटेड सर्किट बोर्ड (पीसीबी) में परतों के बीच परपस्पर संबद्ध के रूप में किया जाता है। पोर्टेबिलिटी और वायरलेस संचार द्वारा संचालित, इलेक्ट्रॉनिक्स उद्योग बढ़ी हुई कार्यक्षमता के साथ प्रभावी, हल्के और विश्वसनीय उत्पाद तैयार करने का प्रयास करता है। इलेक्ट्रॉनिक घटक स्तर पर, यह छोटे फ़ुटप्रिंट क्षेत्रों (जैसे फ्लिप-चिप पैकेज, चिप-स्केल पैकेज और डायरेक्ट चिप अटैचमेंट) के साथ बढ़े हुए I/O वाले घटकों में परिवर्तित हो जाता है और प्रिंटेड सर्किट बोर्ड और पैकेज सब्सट्रेट स्तर पर, उच्च घनत्व आपस में (एचडीआई) (उदाहरण के लिए महीन रेखाएं और स्थान, और छोटे वियास) उपयोग होता है।[1]

अवलोकन

आईपीसी मानकों ने 2013 में माइक्रोविआ की परिभाषा को संशोधित किया, जिसमें छिद्र की गहराई और व्यास का स्वरुप अनुपात 1: 1 या उससे कम था, और छिद्र की गहराई 0.25 मिमी से अधिक नहीं थी। पहले, माइक्रोविआ 0.15 मिमी व्यास से कम या उसके बराबर कोई भी छिद्र था।[2]

स्मार्टफ़ोन और हाथ से पकड़े जाने वाले इलेक्ट्रॉनिक उपकरणों के आगमन के साथ, माइक्रोविआ एकल-स्तर से स्टैक्ड माइक्रोविआ में विकसित हो गए हैं जो कई एचडीआई परतों को पार करते हैं। HDI बोर्ड बनाने के लिए अनुक्रमिक बिल्ड-अप (SBU) तकनीक का उपयोग किया जाता है। एचडीआई परतें सामान्यतः पारंपरिक रूप से निर्मित डबल-पक्षीय कोर बोर्ड या मल्टीलेयर पीसीबी से बनाई जाती हैं। एचडीआई परतें पारंपरिक पीसीबी के दोनों किनारों पर एक-एक करके माइक्रोविअस के साथ बनाई जाती हैं। एसबीयू प्रक्रिया में कई चरण होते हैं: परत लेमिनेशन, गठन के माध्यम से, धातुकरण के माध्यम से और भरने के माध्यम से। प्रत्येक चरण के लिए सामग्रियों और/या प्रौद्योगिकियों के कई विकल्प हैं।[3]

माइक्रोविआ को विभिन्न पदार्थों और प्रक्रियाओं से भरा जा सकता है:[4]

  1. अनुक्रमिक लेमिनेशन प्रक्रिया चरण के दौरान एपॉक्सी रेज़िन (बी-स्टेज) से भरा हुआ है।
  2. एक अलग प्रसंस्करण चरण के रूप में तांबे के अलावा अन्य गैर-प्रवाहकीय या प्रवाहकीय सामग्री से भरा हुआ है।
  3. इलेक्ट्रोप्लेटेड कॉपर क्लोजर के साथ लेपित किया गया है।
  4. स्क्रीन को तांबे के पेस्ट से बंद करके मुद्रित किया गया है।

दबे हुए माइक्रोविआ को भरने की आवश्यकता होती है, जबकि बाहरी परतों पर ब्लाइंड माइक्रोविआ को सामान्यतः भरने की कोई आवश्यकता नहीं होती है।[5] एक स्टैक्ड माइक्रोविआ सामान्यतः कई एचडीआई परतों के बीच विद्युत अंतर्संबंध बनाने और माइक्रोविआ के बाहरी स्तर (स्तरों) के लिए या सबसे बाहरी तांबे पैड पर लगे घटक के लिए संरचनात्मक समर्थन प्रदान करने के लिए इलेक्ट्रोप्लेटेड तांबे से भरा होता है।[6][7]

माइक्रोविआ विश्वसनीयता

पीसीबी उद्योग में इसके सफल व्यापक कार्यान्वयन के लिए एचडीआई संरचना की विश्वसनीयता प्रमुख बाधाओं में से एक है। माइक्रोविअस की अच्छी थर्मो-मैकेनिकल विश्वसनीयता एचडीआई विश्वसनीयता का एक अनिवार्य हिस्सा है। कई शोधकर्ताओं और पेशेवरों ने एचडीआई पीसीबी में माइक्रोविआ की विश्वसनीयता का अध्ययन किया है। माइक्रोविआ की विश्वसनीयता कई कारकों जैसे कि माइक्रोविआ ज्यामिति पैरामीटर, ढांकता हुआ सामग्री गुण और प्रसंस्करण पैरामीटर पर निर्भर करती है।

माइक्रोविआ विश्वसनीयता अनुसंधान ने एकल-स्तरीय रिक्त माइक्रोविआ की विश्वसनीयता के प्रयोगात्मक मूल्यांकन पर ध्यान केंद्रित किया है, साथ ही एकल-स्तरीय माइक्रोविआ में तनाव/खिंचाव वितरण और माइक्रोविआ शिथिलता जीवन अनुमान पर परिमित तत्व विश्लेषण पर ध्यान केंद्रित किया है।[8] अनुसंधान से पहचानी गई माइक्रोविआ विफलताओं में इंटरफेशियल पृथक्करण (माइक्रोविआ के आधार और लक्ष्य पैड के बीच पृथक्करण), बैरल दरारें, कोने/घुटने की दरारें और लक्ष्य पैड दरारें (जिन्हें माइक्रोविआ पुल आउट भी कहा जाता है) सम्मिलित हैं। ये विफलताएं माइक्रोविआ संरचना में धातुकरण और धातु के आस-पास ढांकता हुआ सामग्री के बीच, पीसीबी मोटाई दिशा में थर्मल विस्तार (सीटीई) बेमेल के गुणांक के कारण होने वाले थर्मोमेकैनिकल तनाव के परिणामस्वरूप होती हैं। निम्नलिखित पैराग्राफ में कुछ माइक्रोविआ विश्वसनीयता अनुसंधान पर प्रकाश डाला गया है।

ओगुनजिमी एट अल[9] ने माइक्रोविआ के थकान जीवन पर विनिर्माण और डिजाइन प्रक्रिया चर के प्रभाव को देखा, जिसमें ट्रेस (कंडक्टर) की मोटाई, ट्रेस के चारों ओर ढांकता हुआ की परत या परतें और ज्यामिति के माध्यम से माइक्रोविआ में सम्मिलित हैं। दीवार के कोण, चालक सामग्री के लचीलेपन गुणांक और तनाव एकाग्रता कारक के माध्यम से परिमित तत्व मॉडल अलग-अलग ज्यामिति के साथ बनाए गए थे, और विभिन्न प्रक्रिया चर के महत्व को निर्धारित करने के लिए एनोवा विधि का उपयोग किया गया था। एनोवा परिणामों से पता चला कि तनाव एकाग्रता कारक सबसे महत्वपूर्ण चर था, इसके बाद लचीलापन कारक, धातुकरण मोटाई और दीवार के कोण के माध्यम से प्रभु एट अल[10] ने त्वरित तापमान चक्रण और थर्मल शॉक के प्रभाव को निर्धारित करने के लिए एचडीआई माइक्रोविआ संरचना पर एक परिमित तत्व विश्लेषण (एफईए) किया। लियू एट अल[11] और रामकृष्ण एट अल[12] ने तरल से तरल और हवा से हवा में थर्मल शॉक परीक्षण, क्रमशः, माइक्रोविआ विश्वसनीयता पर ढांकता हुआ सामग्री गुणों और माइक्रोविआ ज्यामिति मापदंडों, जैसे माइक्रोविआ व्यास, दीवार कोण और चढ़ाना मोटाई के प्रभाव का अध्ययन किया गया। एंड्रयूज एट अल [13] ने आईएसटी (इंटरकनेक्ट स्ट्रेस टेस्ट) का उपयोग करके एकल-स्तरीय माइक्रोविआ विश्वसनीयता की जांच की, और सीसा रहित सोल्डर के रिफ्लो चक्र के प्रभाव पर विचार कियावांग और लाइ[14] ने परिमित तत्व मॉडलिंग का उपयोग करके माइक्रोविआ की संभावित विफलता साइटों की जांच की। उन्होंने पाया कि भरे हुए माइक्रोविआ में बिना भरे हुए माइक्रोविआ की तुलना में कम तनाव होता है। चोई और दासगुप्ता ने अपने कार्य में माइक्रोविआ गैर-विनाशकारी निरीक्षण पद्धति को आरम्भ किया था।[15]

यद्यपि अधिकांश माइक्रोविआ विश्वसनीयता अनुसंधान एकल-स्तरीय माइक्रोविआ पर केंद्रित है, बिर्च [4] ने आईएसटी परीक्षण का उपयोग करके बहु-स्तरीय स्टैक्ड और कंपित माइक्रोविआ का परीक्षण किया। परीक्षण डेटा पर वेइबुल विश्लेषण से पता चला है कि एकल- और 2-स्तरीय स्टैक्ड माइक्रोविआ 3- और 4-स्तरीय माइक्रोविआ की तुलना में अधिक समय तक चलते हैं (उदाहरण के लिए 2-स्तरीय स्टैक्ड माइक्रोविआ 4-स्तरीय स्टैक्ड माइक्रोविआ की तुलना में लगभग 20 गुना अधिक विफलता चक्र का अनुभव करते हैं)।

शून्यता के साथ माइक्रोविआ का एक क्रॉस-सेक्शन दृश्य

माइक्रोविआ वॉयडिंग

उच्च घनत्व परपस्पर संबद्ध बोर्ड विकास के लिए एक चुनौती, विश्वसनीय माइक्रोविआ का निर्माण करना है, विशेष रूप से स्टैक्ड माइक्रोविआ के लिए, जिसके परिणामस्वरूप तांबा चढ़ाना प्रक्रिया में अपूर्ण भराव, डिम्पल या रिक्तियां नहीं होती हैं।[16] लेखक प्रयोगात्मक परीक्षण और परिमित तत्व विश्लेषण दोनों का उपयोग करके रिक्तियों और अन्य दोषों के संदर्भ में माइक्रोविआ के खतरे की जांच कर रहे हैं। उन्होंने पाया कि अपूर्ण तांबा भरने से माइक्रोविआ में तनाव का स्तर बढ़ जाता है और इसलिए माइक्रोविआ शिथिलता  जीवन में कमी आती है।

जहां तक रिक्तियों का सवाल है, अलग-अलग शून्यता की स्थिति, जैसे कि विभिन्न शून्य आकार, आकार और स्थान के परिणामस्वरूप माइक्रोविआ विश्वसनीयता पर अलग-अलग प्रभाव पड़ते हैं। गोलाकार आकार की छोटी-छोटी रिक्तियाँ माइक्रोविआ शिथिलता के जीवन को हल्के से बढ़ा देती हैं, लेकिन अत्यधिक शून्यता की स्थिति माइक्रोविआ की अवधि को बहुत कम कर देती हैं।

संदर्भ

  1. "मुद्रित सर्किट डिजाइन में माइक्रोवियास के बारे में आपको जो कुछ जानने की आवश्यकता है". Altium (in English). 2017-05-23. Retrieved 2022-09-29.
  2. https://blog.ipc.org/2014/01/10/new-microvia-definition-seeing-broader-usage/
  3. Happy Holden et al., The HDI Handbook, 1st Edition. Available from: http://www.hdihandbook.com/
  4. 4.0 4.1 B. Birch, “Reliability Testing for Microvias in Printed Wire Boards”, Circuit World, Vol. 35, No. 4, pp. 3 – 17, 2009
  5. IPC-6016, “Qualification and Performance Specification for High-density Interconnect (HDI) Structures,” May 1999
  6. "Microvia HDI PCB :All The Guidance You Need To Make The Right Choice". www.hemeixinpcb.com. Retrieved 2022-09-29.
  7. Forbus, Jeff. "PCB Vias: Understanding the Design of Microvias". blog.epectec.com (in English). Retrieved 2022-09-29.
  8. Roozbeh, Bakhshi. "थर्मोमैकेनिकल तनाव के तहत उच्च घनत्व इंटरकनेक्ट मुद्रित सर्किट बोर्डों में माइक्रोविया के क्षरण पर शून्यता के प्रभाव". Research Gate. Retrieved 2022-09-29.
  9. A. O. Ogunjimi, S. Macgregor, and M. G. Pech, “The effect of manufacturing and design process variabilities on the fatigue file of the high density interconnect vias,” Journal of Electronics Manufacturing, Vol. 5, No. 2, Jule 1995, pp. 111-119
  10. A. S. Prabhu, D. B. Barker, M. G. Pecht, J. W. Evans, W. Grieg, E. S. Bernard, and E. Smith, “A Thermo-Mechanical Fatigue Analysis of High Density Interconnect Vias,” Advances in Electronic Packaging, Vol. 10, No. 1, 1995
  11. F. Liu, J. Lu, V. Sundaram, D. Sutter, G. White and D. F. Baldwin, and Rao R, “Reliability Assessment of Microvias in HDI Printed Circuit Board”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 2, June 2000, pp. 254-259
  12. G. Ramakrishna, F. Liu, and S. K. Sitaramana, “Experimental and Numerical Investigation of Microvia Reliability”, The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002, pp. 932 – 939
  13. [14] P. Andrews, G. Parry, P. Reid, “Concerns in the Lead Free Assembly Environment”, 2005
  14. T. Wang and Y. Lai, “Stress Analysis for Fracture Potential of Blind Via in a Build-up Substrate,” Circuit World, Vol. 32, No. 2, 2006, pp: 39-44
  15. C. Choi and A. Dasgupta, Microvia Non-Destructive Inspection Method, Proceedings of ASME International Mechanical Engineering Congress and Exposition, Vol. 5, 2009, pp. 15-22, doi:10.1115/IMECE2009-11779.
  16. Y. Ning, M. H. Azarian, and M. Pecht, Simulation of the Influence of Manufacturing Quality on Thermomechanical Stress of Microvias, IPC APEX 2014 Technical Conference, March 25–27, 2014