टोरस्र्स , समीकरणों के साथ बनाया गया: x = r sin v; y = (R + r cos v) sin u; z = (R + r cos v) cos u.
एक ट्रेफिल गाँठ बनाने वाली पैरामीट्रिक सतह, संलग्न स्रोत कोड में समीकरण विवरण।
* सबसे सरल प्रकार की प्राचलिक सतहों को दो चर के कार्यों के आरेख द्वारा दिया जाता है:
एक परिमेय सतह एक ऐसी सतह है जो एक परिमेय फलन द्वारा प्राचलीकरण को स्वीकार करती है। एक परिमेय सतह एक बीजीय सतह है। एक बीजीय सतह को देखते हुए, यह तय करना प्रायः आसान होता है कि क्या यह तर्कसंगत है, इसके तर्कसंगत प्राचलीकरण की गणना करने की तुलना में, यदि यह मौजूद है।
[1] परिभ्रमण की सतह सतहों का एक और महत्वपूर्ण वर्ग देती है जिसे आसानी से प्राचलीकरण किया जा सकता है। अगर ग्राफ z = f(x), a ≤ x ≤ b z-अक्ष के तकरीबन घुमाया जाता है तो परिणामी सतह में एक प्राचलीकरण होता है
इसे पैरामिट्रीकृत भी किया जा सकता है
दिखा रहा है कि, अगर कार्यात्मक f तर्कसंगत है, तो सतह तर्कसंगत है।
x-अक्ष के परितः R त्रिज्या के सीधे वृत्तीय बेलनाकार (ज्यामिति) में निम्नलिखित पैरामीट्रिक निरूपण है:
गोलाकार निर्देशांक का उपयोग करके, इकाई वृत्त को निम्न के द्वारा पैरामिट्रीकृत किया जा सकता है
यह प्राचलीकरण उत्तरी और दक्षिणी ध्रुवों पर टूट जाता है जहां दिगंश कोण θ विशिष्ट रूप से निर्धारित नहीं होता है। गोला एक तर्कसंगत सतह है।
एक ही सतह कई अलग-अलग प्राचलीकरण स्वीकार करती है। उदाहरण के लिए, समन्वय z-समतल को पैरामिट्रीकृत किया जा सकता है
िरांक a, b, c, d के लिए ऐसा है कि ad − bc ≠ 0, यानी मैट्रिक्स उलटा मैट्रिक्स है।
स्थानीय अंतर ज्यामिति
एक पैरामीट्रिक सतह के स्थानीय आकार का विश्लेषण उस फ़ंक्शन के टेलर विस्तार पर विचार करके किया जा सकता है जो इसे पैरामीट्रिज़ करता है। अभिन्न का उपयोग करके सतह और सतह क्षेत्र पर एक वक्र की चाप की लंबाई पाई जा सकती है।
संकेतन
मान लें कि पैरामीट्रिक सतह समीकरण द्वारा दी गई है
कहाँ पे पैरामीटर (यू, वी) का एक वेक्टर-मूल्यवान फ़ंक्शन है और पैरामीटर पैरामीट्रिक यूवी-प्लेन में एक निश्चित डोमेन डी के भीतर भिन्न होता है। मापदंडों के संबंध में पहला आंशिक डेरिवेटिव आमतौर पर निरूपित किया जाता है तथा और इसी तरह उच्च डेरिवेटिव के लिए,
वेक्टर कैलकुलस में, मापदंडों को अक्सर निरूपित किया जाता है (एस, टी) और आंशिक डेरिवेटिव को -नोटेशन का उपयोग करके लिखा जाता है:
पैरामीटर के दिए गए मानों के लिए पैरामीट्रिजेशन नियमित है यदि वैक्टर
रैखिक रूप से स्वतंत्र हैं। एक नियमित बिंदु पर स्पर्शरेखा विमान R . में एफाइन प्लेन है3 इन वैक्टरों द्वारा फैला हुआ है और पैरामीटर द्वारा निर्धारित सतह पर बिंदु r(u, v) से होकर गुजरता है। किसी भी स्पर्शरेखा वेक्टर को के रैखिक संयोजन में विशिष्ट रूप से विघटित किया जा सकता है तथा इन सदिशों का क्रॉस उत्पाद स्पर्शरेखा तल का एक सामान्य सदिश है। इस वेक्टर को इसकी लंबाई से विभाजित करने पर एक नियमित बिंदु पर पैरामीट्रिज्ड सतह पर एक इकाई सामान्य वेक्टर प्राप्त होता है:
सामान्य तौर पर, किसी दिए गए बिंदु पर सतह पर इकाई सामान्य वेक्टर के दो विकल्प होते हैं, लेकिन एक नियमित पैरामीट्रिज्ड सतह के लिए, पूर्ववर्ती सूत्र लगातार उनमें से एक को चुनता है, और इस प्रकार सतह की उन्मुखता निर्धारित करता है। R . में एक सतह के कुछ अंतर-ज्यामितीय अपरिवर्तनीय3 सतह से ही परिभाषित होते हैं और ओरिएंटेशन से स्वतंत्र होते हैं, जबकि अन्य ओरिएंटेशन उलट जाने पर साइन बदल देते हैं।
भूतल क्षेत्र
सतह क्षेत्र की गणना सामान्य वेक्टर की लंबाई को एकीकृत करके की जा सकती है पैरामीट्रिक यूवी विमान में उपयुक्त क्षेत्र डी पर सतह पर:
यद्यपि यह सूत्र सतह क्षेत्र के लिए एक बंद अभिव्यक्ति प्रदान करता है, लेकिन सभी विशेष सतहों के लिए यह एक जटिल दोहरा अभिन्न में परिणत होता है, जिसे आम तौर पर कंप्यूटर बीजगणित प्रणाली का उपयोग करके मूल्यांकन किया जाता है या संख्यात्मक रूप से अनुमानित किया जाता है। सौभाग्य से, कई सामान्य सतहें अपवाद बनाती हैं, और उनके क्षेत्र स्पष्ट रूप से ज्ञात होते हैं। यह एक सिलेंडर (ज्यामिति), गोले, शंकु (ज्यामिति) , टोरस और क्रांति की कुछ अन्य सतह के लिए सही है।
इसे अदिश क्षेत्र 1 पर एक सतह समाकलन के रूप में भी व्यक्त किया जा सकता है:
सतह पर स्पर्शरेखा तल पर जिसका उपयोग दूरियों और कोणों की गणना के लिए किया जाता है। एक पैरामीट्रिज्ड सतह के लिए इसके गुणांकों की गणना निम्नानुसार की जा सकती है:
सतह S पर पैरामीट्रिज्ड वक्रों की चाप की लंबाई, S पर वक्रों के बीच का कोण और सतह क्षेत्र सभी पहले मौलिक रूप के संदर्भ में भाव स्वीकार करते हैं।
यदि (u(t), v(t)), a ≤ t ≤ b इस सतह पर एक पैरामीट्रिज्ड वक्र का प्रतिनिधित्व करता है तो इसकी चाप लंबाई की गणना अभिन्न के रूप में की जा सकती है:
पहले मौलिक रूप को बिंदु पर सुचारू रूप से निर्भर करते हुए सतह के प्रत्येक बिंदु पर स्पर्शरेखा तल पर निश्चित द्विरेखीय रूप सममित द्विरेखीय रूप ों के परिवार के रूप में देखा जा सकता है। यह परिप्रेक्ष्य किसी दिए गए बिंदु पर दो वक्रों के बीच के कोण की गणना करने में मदद करता है। यह कोण वक्रों के स्पर्शरेखा सदिशों के बीच के कोण के बराबर होता है। वैक्टर की इस जोड़ी पर मूल्यांकन किया गया पहला मौलिक रूप उनका डॉट उत्पाद है, और कोण मानक सूत्र से पाया जा सकता है
डॉट उत्पाद के माध्यम से कोण के कोज्या को व्यक्त करना।
सतह क्षेत्र को पहले मौलिक रूप के रूप में निम्नानुसार व्यक्त किया जा सकता है:
लैग्रेंज की पहचान से, वर्गमूल के नीचे का व्यंजक ठीक है , और इसलिए यह नियमित बिंदुओं पर सख्ती से सकारात्मक है।
सतह पर स्पर्शरेखा तल पर एक द्विघात रूप है, जो पहले मौलिक रूप के साथ, सतह पर वक्रों की वक्रता को निर्धारित करता है। विशेष मामले में जब (u, v) = (x, y) और दिए गए बिंदु पर सतह पर स्पर्शरेखा तल क्षैतिज है, दूसरा मौलिक रूप अनिवार्य रूप से x और y के कार्य के रूप में z के टेलर विस्तार का द्विघात भाग है।
एक सामान्य पैरामीट्रिक सतह के लिए, परिभाषा अधिक जटिल है, लेकिन दूसरा मौलिक रूप केवल क्रम एक और दो के आंशिक डेरिवेटिव पर निर्भर करता है।
इसके गुणांक को के दूसरे आंशिक व्युत्पन्न के अनुमानों के रूप में परिभाषित किया गया है इकाई सामान्य वेक्टर पर पैरामीट्रिजेशन द्वारा परिभाषित:
पहले मौलिक रूप की तरह, दूसरे मौलिक रूप को बिंदु पर सुचारू रूप से निर्भर करते हुए सतह के प्रत्येक बिंदु पर स्पर्शरेखा तल पर सममित द्विरेखीय रूपों के परिवार के रूप में देखा जा सकता है।
सतह के पहले और दूसरे मौलिक रूप इसके महत्वपूर्ण अंतर-ज्यामितीय अपरिवर्तनीय (गणित) को निर्धारित करते हैं: गाऊसी वक्रता, माध्य वक्रता और प्रमुख वक्रता।
मुख्य वक्रता दूसरे और पहले मौलिक रूपों से मिलकर युग्म के अपरिवर्तनीय हैं। वे जड़ें हैं1, क2 द्विघात समीकरण का
गाऊसी वक्रता K = κ1κ2 और माध्य वक्रता H = (κ1 + κ2)/2 निम्नानुसार गणना की जा सकती है:
एक संकेत तक, ये मात्राएं इस्तेमाल किए गए पैरामीट्रिजेशन से स्वतंत्र होती हैं, और इसलिए सतह की ज्यामिति का विश्लेषण करने के लिए महत्वपूर्ण उपकरण बनाती हैं। अधिक सटीक रूप से, मुख्य वक्रता और माध्य वक्रता संकेत को बदल देती है यदि सतह का उन्मुखीकरण उलट दिया जाता है, और गाऊसी वक्रता पूरी तरह से पैरामीट्रिजेशन से स्वतंत्र है।
एक बिंदु पर गाऊसी वक्रता का चिन्ह उस बिंदु के पास की सतह के आकार को निर्धारित करता है: for K > 0 सतह स्थानीय रूप से उत्तल सेट है और बिंदु को अण्डाकार कहा जाता है, जबकि के लिए K < 0 सतह काठी के आकार की है और बिंदु को अतिपरवलयिक कहा जाता है। जिस बिंदु पर गाऊसी वक्रता शून्य होती है उसे परवलयिक कहा जाता है। सामान्य तौर पर, परवलयिक बिंदु सतह पर एक वक्र बनाते हैं जिसे परवलयिक रेखा कहा जाता है। पहला मौलिक रूप सकारात्मक निश्चित मैट्रिक्स है, इसलिए इसका निर्धारक EG − F2 हर जगह सकारात्मक है। इसलिए, K का चिन्ह . के चिन्ह के साथ मेल खाता है LN − M2, दूसरे मौलिक का निर्धारक।
ऊपर प्रस्तुत #प्रथम मौलिक रूप के गुणांकों को एक सममित मैट्रिक्स में व्यवस्थित किया जा सकता है:
और #दूसरा मौलिक रूप के गुणांक के लिए भी, ऊपर भी प्रस्तुत किया गया है:
अब मैट्रिक्स को परिभाषित करना , प्रमुख वक्रता1 और श्रीमान2 ए के eigenvalue हैं।[1]
अब अगर v1 = (v11, v12) मुख्य वक्रता κ . के अनुरूप ए का आइजन्वेक्टर है1, इकाई वेक्टर . की दिशा में प्रधान वक्रता के संगत प्रधान सदिश कहलाता है1.
तदनुसार, यदि v2 = (v21,v22) मुख्य वक्रता के अनुरूप A का आइजेनवेक्टर है2, इकाई वेक्टर . की दिशा में प्रधान वक्रता के संगत प्रधान सदिश कहलाता है2.