अल्ट्राशॉर्ट पल्स

From Vigyanwiki
Revision as of 09:31, 21 April 2023 by Manidh (talk | contribs)

प्रकाशिकी में, अल्ट्राशॉर्ट पल्स (अतिलघु स्पंद), जिसे पराद्रुत घटना के रूप में भी जाना जाता है, एक विद्युत चुम्बकीय स्पंद है, जिसकी समय अवधि पिकोसेकंड (10−12 सेकंड) या उससे कम के क्रम की होती है। इस तरह के स्पंदों में ब्रॉडबैंड प्रकाशिकी स्पेक्ट्रम होता है, और इसे मोड-लॉक दोलकों द्वारा बनाया जा सकता है। प्रवर्धन के लाभ माध्यम को हानि से बचने के लिए, अल्ट्राशॉर्ट पल्सों के प्रवर्धन को लगभग हमेशा चिरप्ड स्पंद प्रवर्धन की तकनीक की आवश्यकता होती है।

वे उच्च शिखर तीव्रता (या अधिक सही ढंग से, विकिरण) की विशेषता है जो प्रायः वायु सहित विभिन्न पदार्थों में अरैखिक परस्पर क्रिया की ओर जाता है। इन प्रक्रियाओं का अध्ययन अरैखिक प्रकाशिकी के क्षेत्र में किया जाता है।

विशेष साहित्य में, "अतिलघु" फेमटोसेकंड (एफएस) और पिकोसेकंड (पीएस) श्रेणी को संदर्भित करता है, हालांकि इस तरह की स्पंद अब कृत्रिम रूप से उत्पन्न सबसे छोटी स्पंदों के लिए रिकॉर्ड नहीं रखती हैं। वास्तव में, एटोसेकंड समय पैमाने पर अवधियों के साथ एक्स-रे स्पंदों की सूचना दी गई है।

1999 में रसायन विज्ञान में नोबेल पुरस्कार अहमद एच. ज़ेवैल को दिया गया, ताकि अल्ट्राशॉर्ट पल्सों के उपयोग के लिए समय-समय पर रासायनिक प्रतिक्रियाओं का निरीक्षण किया जा सके, जिस पर वे फेमटोकेमिस्ट्री के क्षेत्र को खोलते हैं।

परिभाषा

समय क्षेत्र में प्रकाश की एक सकारात्मक चिरप्ड अल्ट्राशॉर्ट पल्स।

अल्ट्राशॉर्ट पल्स की कोई मानक परिभाषा नहीं है। प्रायः विशेषता 'अतिलघु' कुछ दसियों फेमटोसेकंड की अवधि वाली स्पंदों पर लागू होती है, लेकिन बड़े अर्थ में कोई भी स्पंद जो कुछ पिकोसेकंड से कम समय तक चलती है, उसे अतिलघु माना जा सकता है। "अतिलघु" और "पराद्रुत" के बीच अंतर आवश्यक है क्योंकि जिस गति से स्पंद प्रसार करता है वह उस माध्यम के अपवर्तन के सूचकांक का फलन है जिसके माध्यम से यह यात्रा करता है, जबकि "अतिलघु" स्पंद तरंगपैकेट की अस्थायी चौड़ाई को संदर्भित करता है।[1]

सामान्य उदाहरण चिरप्ड गॉसियन स्पंद है, एक तरंग जिसका क्षेत्र आयाम गॉसियन लिफाफे का अनुसरण करता है और जिसका तात्कालिक चरण आवृत्ति स्वीप है।

पृष्ठभूमि

अल्ट्राशॉर्ट पल्स के अनुरूप वास्तविक विद्युत क्षेत्र स्पंद के केंद्रीय तरंग दैर्ध्य के अनुरूप कोणीय आवृत्ति ω0 पर दोलन कर रहा है। गणनाओं को सुविधाजनक बनाने के लिए, जटिल क्षेत्र E(t) परिभाषित किया गया है। औपचारिक रूप से, इसे वास्तविक क्षेत्र के अनुरूप विश्लेषणात्मक संकेत के रूप में परिभाषित किया जाता है।

केंद्रीय कोणीय आवृत्ति ω0 प्रायः जटिल क्षेत्र में स्पष्ट रूप से लिखी जाती है, जिसे अस्थायी तीव्रता समारोह I(t) और अस्थायी चरण फलन ψ(t) के रूप में अलग किया जा सकता है-

आवृत्ति क्षेत्र में जटिल विद्युत क्षेत्र की अभिव्यक्ति E(t) के फूरियर रूपांतरण से प्राप्त की जाती है-

शब्द की उपस्थिति के कारण, E(ω) ω0 के आसपास केंद्रित है, और E(ω-ω0) को केवल E(ω) लिखकर संदर्भित करना एक सामान्य अभ्यास है, जो हम इस लेख के अन्य भागों में करेंगे।

जैसे ही समय क्षेत्र में, आवृत्ति क्षेत्र में तीव्रता और चरण फलन को परिभाषित किया जा सकता है-

मात्रा स्पंद की शक्ति वर्णक्रमीय घनत्व (या केवल, स्पेक्ट्रम) है, और चरण वर्णक्रमीय घनत्व (या केवल वर्णक्रमीय चरण) है। वर्णक्रमीय चरण फलनों के उदाहरण में वह स्थिति सम्मिलित है जहां स्थिर है, जिस स्थिति में स्पंद को बैंडविड्थ-सीमित स्पंद कहा जाता है, या जहां द्विघात फलन है, उस स्थिति में तात्क्षणिक आवृति स्वीप की उपस्थिति के कारण स्पंद को चिरप्ड स्पंद कहा जाता है। इस तरह की चिरप को पदार्थ (जैसे कांच) के माध्यम से स्पंद के प्रसार के रूप में प्राप्त किया जा सकता है और यह उनके प्रसार के कारण होता है। इसके परिणामस्वरूप स्पंद का अस्थायी विस्तार होता है।

तीव्रता फलन-अस्थायी और वर्णक्रमीय -स्पंद की समय अवधि और स्पेक्ट्रम बैंडविड्थ निर्धारित करते हैं। जैसा कि अनिश्चितता सिद्धांत द्वारा कहा गया है, उनके उत्पाद (कभी-कभी समय-बैंडविड्थ उत्पाद कहा जाता है) की एक निचली सीमा होती है। यह न्यूनतम मान अवधि के लिए प्रयुक्त परिभाषा और स्पंद के आकार पर निर्भर करता है। किसी दिए गए स्पेक्ट्रम के लिए, न्यूनतम समय-बैंडविड्थ उत्पाद, और इसलिए सबसे छोटी स्पंंद, रूपांतर-सीमित स्पंद द्वारा प्राप्त की जाती है, अर्थात, स्थिर वर्णक्रमीय चरण के लिए। दूसरी ओर, समय-बैंडविड्थ उत्पाद के उच्च मान एक अधिक जटिल स्पंद का संकेत देते हैं।

स्पंद आकार नियंत्रण

हालांकि प्रकाशिक उपकरणों का उपयोग निरंतर प्रकाश के लिए भी किया जाता है, जैसे कि किरण विस्तारक और स्थानिक फिल्टर, अल्ट्राशॉर्ट पल्सों के लिए उपयोग किए जा सकते हैं, कई प्रकाशिक उपकरणों को विशेष रूप से अल्ट्राशॉर्ट पल्सों के लिए डिज़ाइन किया गया है। उनमें से स्पंद सम्पीडक है,[2] एक उपकरण जिसका उपयोग अल्ट्राशॉर्ट पल्सों के वर्णक्रमीय चरण को नियंत्रित करने के लिए किया जा सकता है। यह प्रिज्म या ग्रेटिंग के अनुक्रम से बना है। जब ठीक से समायोजित किया जाता है तो यह इनपुट स्पंद के वर्णक्रमीय चरण φ(ω) को बदल सकता है ताकि आउटपुट स्पंद कम से कम संभव अवधि के साथ बैंडविड्थ-सीमित स्पंद हो। स्पंद संरूपित्र का उपयोग चरण और अल्ट्राशॉर्ट पल्सों के आयाम दोनों में अधिक जटिल परिवर्तन करने के लिए किया जा सकता है।

स्पंद को सटीक रूप से नियंत्रित करने के लिए, निश्चित स्पंद वर्णक्रमीय चरण (जैसे रूपांतर-सीमित) प्राप्त करने के लिए स्पंद वर्णक्रमीय चरण का पूर्ण लक्षण वर्णन आवश्यक है। फिर, स्पंद को नियंत्रित करने के लिए 4f समतल में स्थानिक प्रकाश न्यूनाधिक का उपयोग किया जा सकता है। मल्टीफोटोन अंतःस्पंद अंतःक्षेप चरण स्कैन (एमआईआईपीएस) इस अवधारणा पर आधारित एक तकनीक है। स्थानिक प्रकाश न्यूनाधिक के चरण स्कैन के माध्यम से, एमआईआईपीएस (MIIPS) न केवल लक्षण वर्णन कर सकता है, बल्कि लक्ष्य स्थान (जैसे कि अनुकूलित शीर्ष शक्ति के लिए रूपांतर-सीमित स्पंद, और अन्य विशिष्ट स्पंद आकार) पर आवश्यक स्पंद आकार प्राप्त करने के लिए अल्ट्राशॉर्ट पल्स में हेरफेर भी कर सकता है। यदि स्पंद संरूपित्र पूरी तरह से व्यवस्थित किया गया है, तो यह तकनीक अल्ट्राशॉर्ट पल्सों के वर्णक्रमीय चरण को नियंत्रित करने की अनुमति देती है, जिसमें साधारण प्रकाशिक व्यवस्था का उपयोग किया जाता है, जिसमें कोई गतिमान भाग नहीं होता है। हालाँकि एमआईआईपीएस (MIIPS) की सटीकता अन्य तकनीकों के संबंध में कुछ हद तक सीमित है, जैसे आवृत्ति-समाधित प्रकाशिक अवरोधन (FROG)।[3]

माप तकनीक

अतिलघु प्रकाशिक स्पंद को मापने के लिए कई तकनीकें उपलब्ध हैं।

जब किसी विशेष स्पंद के आकार को ग्रहण किया जाता है तो तीव्रता स्वतःसंबंध स्पंद चौड़ाई देती है।

स्पेक्ट्रल व्यतिकरणमिति (एसआई) एक रेखीय तकनीक है जिसका उपयोग तब किया जा सकता है जब पूर्व-विशेषता वाले संदर्भ स्पंद उपलब्ध हो। यह तीव्रता और चरण देता है। एल्गोरिथ्म जो एसआई (SI) संकेत से तीव्रता और चरण को निकालता है वह प्रत्यक्ष है। प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण (स्पाइडर) के लिए स्पेक्ट्रल चरण व्यतिकरणमिति स्पेक्ट्रल अपरुपण व्यतिकरणमिति पर आधारित गैर-रैखिक स्व-संदर्भ तकनीक है। विधि एसआई (SI) के समान है, सिवाय इसके कि संदर्भ स्पंद स्वयं की स्पेक्ट्रल रूप से स्थानांतरित प्रतिकृति है, जो एसआई (SI) के समान प्रत्यक्ष एफएफटी (FFT) फ़िल्टरिंग दिनचर्या के माध्यम से वर्णक्रमीय तीव्रता और जांच स्पंद के चरण को प्राप्त करने की अनुमति देता है। लेकिन जिसके लिए जांच स्पंद चरण प्राप्त करने के लिए व्यतिकरणमिति से निकाले गए चरण के एकीकरण की आवश्यकता होती है।

आवृत्ति-समाधान प्रकाशिक गेटिंग (FROG) एक अरेखीय तकनीक है जो स्पंद की तीव्रता और चरण का उत्पादन करती है। यह वर्णक्रमीय रूप से हल किया गया स्वसंबंध है। एल्गोरिदम जो एफआरओजी (FROG) अवशेष से तीव्रता और चरण को निकालता है, पुनरावृत्त होता है। पराद्रुत घटना लेजर प्रकाश ई-क्षेत्रों (ग्रेनौइल) का ग्रेटिंग-निष्कासित व्यावहारिक अवलोकन एफआरओजी (FROG) का सरलीकृत संस्करण है। (ग्रेनौली "मेंढक" के लिए फ्रेंच है।)

चिरप स्कैन एमआईआईपीएस (MIIPS) के समान तकनीक है जो द्विघात स्पेक्ट्रल चरणों के रैंप को लागू करके और दूसरे हार्मोनिक स्पेक्ट्रा को मापने के द्वारा स्पंद के वर्णक्रमीय चरण को मापता है। एमआईआईपीएस (MIIPS) के संबंध में, जिसके लिए वर्णक्रमीय चरण को मापने के लिए कई पुनरावृत्तियों की आवश्यकता होती है, आयाम और स्पंद के चरण दोनों को पुनः प्राप्त करने के लिए केवल दो चिरप स्कैन की आवश्यकता होती है।[4]

मल्टीफोटोन अंतःस्पंद व्यतिकरण चरण स्कैन (एमआईआईपीएस) अल्ट्राशॉर्ट पल्स की विशेषता और कुशलतापूर्वक प्रयोग करने की एक विधि है।

गैर समदैशिक माध्यम में तरंग पैकेट प्रसार

ऊपर की चर्चा को आंशिक रूप से दोहराने के लिए, केंद्रीय तरंग सदिश और स्पंद की केंद्रीय आवृत्ति के साथ एक तरंग के विद्युत क्षेत्र का धीरे-धीरे परिवर्ती आवरण सन्निकटन (SVEA) इस प्रकार दिया गया है-

हम विद्युत क्षेत्र के एसवीईए (SVEA) के लिए सजातीय प्रसार वाले गैर-समदैशिक माध्यम में प्रसार पर विचार करते हैं। यह मानते हुए कि पल्स z- अक्ष की दिशा में फैल रही है, यह दिखाया जा सकता है कि सबसे सामान्य स्थितियों में से एक के लिए आवरण , अर्थात् द्विअक्षीय क्रिस्टल, पीडीई (PDE) द्वारा नियंत्रित होता है-[5]

जहां गुणांक में विवर्तन और प्रसार प्रभाव होते हैं जो कंप्यूटर बीजगणित के साथ विश्लेषणात्मक रूप से निर्धारित किए गए हैं और संख्यात्मक रूप से समदैशिक और गैर-समदैशिक माध्यम दोनों के लिए तीसरे क्रम के भीतर सत्यापित किए गए हैं, जो निकट-क्षेत्र और दूर-क्षेत्र में मान्य हैं। समूह वेग प्रक्षेपण का व्युत्क्रम है। में शब्द समूह वेग प्रसार (जीवीडी) या द्वितीय क्रम प्रसार है यह स्पंद की अवधि को बढ़ाता है और स्पंद को चिरप करता है क्योंकि यह माध्यम से प्रसार करता है। में शब्द एक तीसरे क्रम का प्रसार शब्द है जो स्पंद अवधि को और बढ़ा सकता है, भले ही नष्ट हो जाए। और में शब्द स्पंद के चलने का वर्णन करते हैं; गुणांक समूह वेग के घटक और स्पंद (z-अक्ष) के प्रसार की दिशा में इकाई सदिश का अनुपात है। और में शब्द प्रसार के अक्ष के लम्बवत् दिशा में प्रकाशीय तरंग पैकेट के विवर्तन का वर्णन करते हैं। और में समय और स्थान में मिश्रित व्युत्पन्न वाले शब्द क्रमशः और अक्षों के बारे में तरंग पैकेट को घुमाते हैं, तरंग पैकेट (जीवीडी (GVD) के कारण वृद्धि के अलावा) की अस्थायी चौड़ाई बढ़ाते हैं क्रमशः और दिशाओं में प्रसार बढ़ाएं, और चिरप बढ़ाएं (इसके अतिरिक्त के कारण) जब बाद वाला और/या और गैर-लुप्त हो रहा है। शब्द तरंग पैकेट को तल में घुमाता है।आश्चर्यजनक रूप से पर्याप्त है, पहले अपूर्ण विस्तार के कारण, स्पंद के इस घूर्णन को 1990 के दशक के अंत तक अनुभव नहीं किया गया था, लेकिन प्रयोगात्मक रूप से इसकी पुष्टि की गई है।[6] तीसरे क्रम में, उपरोक्त समीकरण के आरएचएस (RHS) में एक अक्षीय क्रिस्टल स्थिति के लिए ये अतिरिक्त शर्तें पाई जाती हैं-[7]

स्पंद के प्रसार के सामने की वक्रता के लिए पहली और दूसरी शर्तें जिम्मेदार हैं। में शब्द सहित ये शब्द एक समदैशिक माध्यम में उपस्थित हैं और बिंदु स्रोत से उत्पन्न होने वाले प्रसार के सामने की गोलाकार सतह के लिए उत्तरदायी हैं। शब्द को अपवर्तन के सूचकांक, आवृत्ति और उसके व्युत्पन्न के संदर्भ में व्यक्त किया जा सकता है और शब्द भी स्पंद को विकृत करता है लेकिन ऐसे फैशन में जो और (विवरण के लिए ट्रिपपेनबैक, स्कॉट और बैंड का संदर्भ देखें) की भूमिकाओं को विपरीत कर देता है। अब तक, यहाँ उपचार रेखीय है, लेकिन गैर-रैखिक प्रसार वाले शब्द प्रकृति के लिए सर्वव्यापी हैं। एक अतिरिक्त अरैखिक शब्द से जुड़े अध्ययनों से पता चला है कि इस तरह के शब्दों का तरंग पैकेट पर गहरा प्रभाव पड़ता है, जिसमें अन्य बातों के अलावा, तरंग पैकेट का स्वयं-खड़ा होना भी सम्मिलित है।[8] गैर-रैखिक पहलू अंततः प्रकाशीय सॉलिटॉन की ओर ले जाते हैं।

बल्कि सामान्य होने के बावजूद, प्रकाशीय स्पंद के प्रसार का वर्णन करने के लिए एसवीईए (SVEA) को एक सरल तरंग समीकरण तैयार करने की आवश्यकता नहीं होती है। वास्तव में, जैसा कि दिखाया गया है,[9] यहां तक कि विद्युत चुम्बकीय द्वितीय क्रम तरंग समीकरण का बहुत ही सामान्य रूप दिशात्मक घटकों में खंड किया जा सकता है, जो आवरण के स्थान पर क्षेत्र के लिए प्रथम क्रम तरंग समीकरण तक पहुंच प्रदान करता है। इसके लिए केवल एक धारणा की आवश्यकता होती है कि तरंग दैर्ध्य के पैमाने पर क्षेत्र का विकास धीमा है, और स्पंद की बैंडविड्थ को बिल्कुल भी प्रतिबंधित नहीं करता है - जैसा कि विशद रूप से प्रदर्शित किया गया है।[10]

उच्च हार्मोनिक्स

उच्च हार्मोनिक उत्पादन के माध्यम से गैर-रैखिक माध्यम में उच्च ऊर्जा अल्ट्राशॉर्ट पल्सों को उत्पन्न किया जा सकता है। उच्च तीव्रता वाली अल्ट्राशॉर्ट पल्स माध्यम में हार्मोनिक्स की एक सरणी उत्पन्न करेगी इसके बाद एक एकवर्णक के साथ रुचि के विशेष हार्मोनिक का चयन किया जाता है। इस तकनीक का उपयोग निकट अवरक्त टी-नीलम लेजर स्पंदो से अत्यधिक पराबैंगनी और सॉफ्ट-एक्स-रे प्रणालियों में अल्ट्राशॉर्ट पल्सों का उत्पादन करने के लिए किया गया है।

अनुप्रयोग

उन्नत पदार्थ 3डी माइक्रो-/नैनो-प्रसंस्करण

पिछले दशक के दौरान विभिन्न प्रकार के अनुप्रयोगों के लिए जटिल संरचनाओं और उपकरणों को कुशलतापूर्वक बनाने के लिए फेमटोसेकेंड लेजर की क्षमता का व्यापक अध्ययन किया गया है। अतिलघु प्रकाश स्पंद के साथ अत्याधुनिक लेजर प्रोसेसिंग तकनीकों का उपयोग उप-माइक्रोमीटर विश्लेषण वाले पदार्थ को निर्माण करने के लिए किया जा सकता है। उपयुक्त प्रकाश प्रतिरोध और अन्य पारदर्शी माध्यम के प्रत्यक्ष लेजर लेखन (DLW) जटिल त्रि-आयामी फोटोनिक क्रिस्टल (PhC), माइक्रो-प्रकाशीय घटक, ग्रेटिंग्स, ऊतक अभियांत्रिकी (TE) स्कैफोल्ड और प्रकाशीय तरंगपथक बना सकते हैं। दूरसंचार और जैव अभियांत्रिकी में अगली पीढ़ी के अनुप्रयोगों को सशक्त बनाने के लिए ऐसी संरचनाएं संभावित रूप से उपयोगी हैं जो तेजी से परिष्कृत लघु भागों के निर्माण पर निर्भर हैं। पराद्रुत लेजर प्रसंस्करण की सटीकता, निर्माण की गति और बहुमुखी प्रतिभा इसे विनिर्माण के लिए एक महत्वपूर्ण औद्योगिक उपकरण बनने के लिए अच्छी तरह से स्थापित करती है।[11]

सूक्ष्म-मशीनिंग

फेमटोसेकंड लेजर के अनुप्रयोगों के बीच, जिरकोनिया दंत प्रत्यारोपण के आसपास हड्डी के निर्माण को बढ़ाने के लिए प्रत्यारोपण सतहों के माइक्रोटेक्स्चराइजेशन का प्रयोग किया गया है। तकनीक ने बहुत कम तापीय क्षति के साथ और सतह के दूषित पदार्थों को कम करने के साथ सटीक होने का प्रदर्शन किया। पश्च पशु अध्ययनों ने प्रदर्शित किया कि ऑक्सीजन परत में वृद्धि और फेमटोसेकंड लेजर के साथ माइक्रोटेक्स्चरिंग द्वारा बनाई गई सूक्ष्म और नैनोफीचर्स के परिणामस्वरूप हड्डियों के निर्माण की उच्च दर, उच्च अस्थि घनत्व और बेहतर यांत्रिक स्थिरता हुई है।[12][13][14]

यह भी देखें

संदर्भ

  1. Paschotta, Rüdiger. "लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश - अल्ट्राशॉर्ट पल्स, फेमटोसेकंड, लेजर". www.rp-photonics.com.
  2. J. C. Diels, Femtosecond dye lasers, in Dye Laser Principles, F. J. Duarte and L. W. Hillman (Eds.) (Academic, New York, 1990) Chapter 3.
  3. Comin, Alberto; Rhodes, Michelle; Ciesielski, Richard; Trebino, Rick; Hartschuh, Achim (2015). "Pulse Characterization in Ultrafast Microscopy: a Comparison of FROG, MIIPS and G-MIIPS". Cleo: 2015. pp. SW1H.5. doi:10.1364/CLEO_SI.2015.SW1H.5. ISBN 978-1-55752-968-8. S2CID 23655339.
  4. Loriot, Vincent; Gitzinger, Gregory; Forget, Nicolas (2013). "चिरप स्कैन द्वारा फेमटोसेकंड लेजर दालों का स्व-संदर्भित लक्षण वर्णन". Optics Express. 21 (21): 24879–93. Bibcode:2013OExpr..2124879L. doi:10.1364/OE.21.024879. ISSN 1094-4087. PMID 24150331.
  5. Band, Y. B.; Trippenbach, Marek (1996). "नॉनिसोट्रोपिक मीडिया में ऑप्टिकल वेव-पैकेट प्रसार". Physical Review Letters. 76 (9): 1457–1460. Bibcode:1996PhRvL..76.1457B. doi:10.1103/PhysRevLett.76.1457. PMID 10061728.
  6. Radzewicz, C.; Krasinski, J. S.; La Grone, M. J.; Trippenbach, M.; Band, Y. B. (1997). "रूटाइल क्रिस्टल में फेमटोसेकंड वेव-पैकेट टिल्टिंग का इंटरफेरोमेट्रिक माप". Journal of the Optical Society of America B. 14 (2): 420. Bibcode:1997JOSAB..14..420R. doi:10.1364/JOSAB.14.000420.
  7. Trippenbach, Marek; Scott, T. C.; Band, Y. B. (1997). "फैलाने वाले मीडिया में बीम और दालों के निकट-क्षेत्र और दूर-क्षेत्र प्रसार" (PDF). Optics Letters. 22 (9): 579–81. Bibcode:1997OptL...22..579T. doi:10.1364/OL.22.000579. PMID 18185596.
  8. Trippenbach, Marek; Band, Y. B. (1997). "फैलाने वाले नॉनलाइनियर मीडिया में शॉर्ट-पल्स स्प्लिटिंग की गतिशीलता". Physical Review A. 56 (5): 4242–4253. Bibcode:1997PhRvA..56.4242T. doi:10.1103/PhysRevA.56.4242.
  9. Kinsler, Paul (2010). "न्यूनतम सन्निकटन के साथ ऑप्टिकल पल्स प्रसार". Physical Review A. 81 (1): 013819. arXiv:0810.5689. Bibcode:2010PhRvA..81a3819K. doi:10.1103/PhysRevA.81.013819. ISSN 1050-2947.
  10. Genty, G.; Kinsler, P.; Kibler, B.; Dudley, J. M. (2007). "नॉनलाइनियर वेवगाइड्स में उप-चक्र गतिकी और हार्मोनिक जनरेशन का नॉनलाइनियर लिफाफा समीकरण मॉडलिंग". Optics Express. 15 (9): 5382–7. Bibcode:2007OExpr..15.5382G. doi:10.1364/OE.15.005382. ISSN 1094-4087. PMID 19532792.
  11. Malinauskas, Mangirdas; Žukauskas, Albertas; Hasegawa, Satoshi; Hayasaki, Yoshio; Mizeikis, Vygantas; Buividas, Ričardas; Juodkazis, Saulius (2016). "सामग्री का अल्ट्राफास्ट लेजर प्रसंस्करण: विज्ञान से उद्योग तक". Light: Science & Applications. 5 (8): e16133. Bibcode:2016LSA.....5E6133M. doi:10.1038/lsa.2016.133. ISSN 2047-7538. PMC 5987357. PMID 30167182.
  12. Delgado-Ruíz, R. A.; Calvo-Guirado, J. L.; Moreno, P.; Guardia, J.; Gomez-Moreno, G.; Mate-Sánchez, J. E.; Ramirez-Fernández, P.; Chiva, F. (2011). "जिरकोनिया दंत प्रत्यारोपण की फेमटोसेकंड लेजर माइक्रोस्ट्रक्चरिंग". Journal of Biomedical Materials Research Part B: Applied Biomaterials. 96B (1): 91–100. doi:10.1002/jbm.b.31743. ISSN 1552-4973. PMID 21061361.
  13. Calvo Guirado et al, 2013 and 2014
  14. Delgado-Ruiz et al, 2014)

अग्रिम पठन

बाहरी संबंध